Taming Binarized Neural Networks and Mixed-Integer Programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379059" target="_blank" >RIV/68407700:21230/24:00379059 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v38i10.28968" target="_blank" >https://doi.org/10.1609/aaai.v38i10.28968</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v38i10.28968" target="_blank" >10.1609/aaai.v38i10.28968</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Taming Binarized Neural Networks and Mixed-Integer Programs
Popis výsledku v původním jazyce
There has been a great deal of recent interest in binarized neural networks, especially because of their explainability. At the same time, automatic differentiation algorithms such as back-propagation fail for binarized neural networks, which limits their applicability. We show that binarized neural networks admit a tame representation by reformulating the problem of training binarized neural networks as a subadditive dual of a mixed-integer program, which we show to have nice properties. This makes it possible to use the framework of Bolte et al. for implicit differentiation, which offers the possibility for practical implementation of backpropagation in the context of binarized neural networks. This approach could also be used for a broader class of mixed-integer programs, beyond the training of binarized neural networks, as encountered in symbolic approaches to AI and beyond.
Název v anglickém jazyce
Taming Binarized Neural Networks and Mixed-Integer Programs
Popis výsledku anglicky
There has been a great deal of recent interest in binarized neural networks, especially because of their explainability. At the same time, automatic differentiation algorithms such as back-propagation fail for binarized neural networks, which limits their applicability. We show that binarized neural networks admit a tame representation by reformulating the problem of training binarized neural networks as a subadditive dual of a mixed-integer program, which we show to have nice properties. This makes it possible to use the framework of Bolte et al. for implicit differentiation, which offers the possibility for practical implementation of backpropagation in the context of binarized neural networks. This approach could also be used for a broader class of mixed-integer programs, beyond the training of binarized neural networks, as encountered in symbolic approaches to AI and beyond.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th AAAI Conference on Artificial Intelligence
ISBN
—
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
10935-10943
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Vancouver
Datum konání akce
20. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001241513600021