Unsupervised Learning-Based Data Collection Planning with Dubins Vehicle and Constrained Data Retrieving Time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380506" target="_blank" >RIV/68407700:21230/24:00380506 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-67159-3_2" target="_blank" >https://doi.org/10.1007/978-3-031-67159-3_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-67159-3_2" target="_blank" >10.1007/978-3-031-67159-3_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised Learning-Based Data Collection Planning with Dubins Vehicle and Constrained Data Retrieving Time
Popis výsledku v původním jazyce
In remote data collection from sampling stations, a vehicle must be within sufficient distance from a particular station for a predefined minimal time to retrieve required data from the site. The planning task is to find a cost-efficient data collection plan to retrieve data from all the stations. For a fixed-wing aerial vehicle flying with a constant forward velocity, the problem is to determine the shortest feasible path that visits every sensing site and ensure the vehicle is within a reliable communication distance from the station for a sufficient period. We propose to formulate the planning problem as a variant of the Close Enough Dubins Traveling Salesman Problem with Time Constraints (CEDTSP-TC) that is heuristically solved by unsupervised learning of the Growing Self-Organizing Array (GSOA) modified to address the constrained minimal data retrieving time. The proposed method is compared with a baseline based on a sampling-based decoupled approach, and the results support the feasibility of both proposed solvers in random instances.
Název v anglickém jazyce
Unsupervised Learning-Based Data Collection Planning with Dubins Vehicle and Constrained Data Retrieving Time
Popis výsledku anglicky
In remote data collection from sampling stations, a vehicle must be within sufficient distance from a particular station for a predefined minimal time to retrieve required data from the site. The planning task is to find a cost-efficient data collection plan to retrieve data from all the stations. For a fixed-wing aerial vehicle flying with a constant forward velocity, the problem is to determine the shortest feasible path that visits every sensing site and ensure the vehicle is within a reliable communication distance from the station for a sufficient period. We propose to formulate the planning problem as a variant of the Close Enough Dubins Traveling Salesman Problem with Time Constraints (CEDTSP-TC) that is heuristically solved by unsupervised learning of the Growing Self-Organizing Array (GSOA) modified to address the constrained minimal data retrieving time. The proposed method is compared with a baseline based on a sampling-based decoupled approach, and the results support the feasibility of both proposed solvers in random instances.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-05762S" target="_blank" >GA22-05762S: Optimální řešení robotických směrovacích úloh</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond
ISBN
978-3-031-67158-6
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
11
Strana od-do
11-21
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
Mittweida
Datum konání akce
10. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001322509700002