Explainability Insights to Cellular Simultaneous Recurrent Neural Networks for Classical Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380975" target="_blank" >RIV/68407700:21230/24:00380975 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0012375800003636" target="_blank" >https://doi.org/10.5220/0012375800003636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012375800003636" target="_blank" >10.5220/0012375800003636</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explainability Insights to Cellular Simultaneous Recurrent Neural Networks for Classical Planning
Popis výsledku v původním jazyce
The connection between symbolic artificial intelligence and statistical machine learning has been explored in many ways. That includes using machine learning to learn new heuristic functions for navigating classical planning algorithms. Many approaches which target this task use different problem representations and different machine learning techniques to train estimators for navigating search algorithms to find sequential solutions to deterministic problems. In this work, we focus on one of these approaches which is the semantically layered Cellular Simultaneous Neural Network architecture (slCSRN) (Urbanovská and Komenda, 2023) used to learn heuristic for grid-based planning problems represented by the semantically layered representation. We create new problem domains for this architecture-the Tetris and Rush-Hour domains. Both do not have an explicit agent that only modifies its surroundings unlike already explored problem domains. We compare the performance of the trained slCSRN to the existing classical planning heuristics and we also provide insights into the slCSRN computation as we provide explainability analysis of the learned heuristic functions.
Název v anglickém jazyce
Explainability Insights to Cellular Simultaneous Recurrent Neural Networks for Classical Planning
Popis výsledku anglicky
The connection between symbolic artificial intelligence and statistical machine learning has been explored in many ways. That includes using machine learning to learn new heuristic functions for navigating classical planning algorithms. Many approaches which target this task use different problem representations and different machine learning techniques to train estimators for navigating search algorithms to find sequential solutions to deterministic problems. In this work, we focus on one of these approaches which is the semantically layered Cellular Simultaneous Neural Network architecture (slCSRN) (Urbanovská and Komenda, 2023) used to learn heuristic for grid-based planning problems represented by the semantically layered representation. We create new problem domains for this architecture-the Tetris and Rush-Hour domains. Both do not have an explicit agent that only modifies its surroundings unlike already explored problem domains. We compare the performance of the trained slCSRN to the existing classical planning heuristics and we also provide insights into the slCSRN computation as we provide explainability analysis of the learned heuristic functions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-30043S" target="_blank" >GA22-30043S: Víceúčelové plánování úkolů a pohybů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Conference on Agents and Artificial Intelligence (Volume 3)
ISBN
978-989-758-680-4
ISSN
2184-3589
e-ISSN
2184-433X
Počet stran výsledku
8
Strana od-do
592-599
Název nakladatele
Science and Technology Publications, Lda
Místo vydání
Setúbal
Místo konání akce
Rome
Datum konání akce
24. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—