LiDAR-Visual-Inertial Tightly-coupled Odometry with Adaptive Learnable Fusion Weights
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00382151" target="_blank" >RIV/68407700:21230/24:00382151 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS58592.2024.10802180" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10802180</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS58592.2024.10802180" target="_blank" >10.1109/IROS58592.2024.10802180</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LiDAR-Visual-Inertial Tightly-coupled Odometry with Adaptive Learnable Fusion Weights
Popis výsledku v původním jazyce
In this paper, we address the sensitivity of the 3D LiDAR-based localization to environmental structural ambiguity. Although existing approaches employ additional sensors, such as cameras and inertial measurement units, to account for such ambiguities, multi-sensor localization is still an open problem. Limitations are from the need to tune fusion parameters to compensate for limited ambiguity detection manually. Therefore, we propose a feature-based localization method that learns the fusion parameters using ground truth and thus supports autonomous mobile robotic systems in new locations. The method combines planar surface LiDAR features with close and far camera features, and its further advantage is an online adjustment of the feature weights based on the measured environment ambiguity. The evaluation has been performed on the existing M2DGR dataset and custom dataset with geometrical ambiguities. The proposed method is competitive to or outperforms the existing LiDAR-based methods F-LOAM and LIO-SAM and the Visual-Inertial localization method VINS-Mono. Based on the reported results, the proposed method is a vital combination of LiDAR-based and visual features.
Název v anglickém jazyce
LiDAR-Visual-Inertial Tightly-coupled Odometry with Adaptive Learnable Fusion Weights
Popis výsledku anglicky
In this paper, we address the sensitivity of the 3D LiDAR-based localization to environmental structural ambiguity. Although existing approaches employ additional sensors, such as cameras and inertial measurement units, to account for such ambiguities, multi-sensor localization is still an open problem. Limitations are from the need to tune fusion parameters to compensate for limited ambiguity detection manually. Therefore, we propose a feature-based localization method that learns the fusion parameters using ground truth and thus supports autonomous mobile robotic systems in new locations. The method combines planar surface LiDAR features with close and far camera features, and its further advantage is an online adjustment of the feature weights based on the measured environment ambiguity. The evaluation has been performed on the existing M2DGR dataset and custom dataset with geometrical ambiguities. The proposed method is competitive to or outperforms the existing LiDAR-based methods F-LOAM and LIO-SAM and the Visual-Inertial localization method VINS-Mono. Based on the reported results, the proposed method is a vital combination of LiDAR-based and visual features.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
ISBN
979-8-3503-7770-5
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
7
Strana od-do
5641-5647
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Abu Dhabi
Datum konání akce
14. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001411890000572