Solver for Systems of Linear Equations with Infinite Precision on a GPU Cluster
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00333879" target="_blank" >RIV/68407700:21240/16:00333879 - isvavai.cz</a>
Výsledek na webu
<a href="http://poseidon2.feld.cvut.cz/conf/poster/poster2016/proceedings/Section_ICS/ICS_097_Khun.pdf" target="_blank" >http://poseidon2.feld.cvut.cz/conf/poster/poster2016/proceedings/Section_ICS/ICS_097_Khun.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solver for Systems of Linear Equations with Infinite Precision on a GPU Cluster
Popis výsledku v původním jazyce
In this paper, we would like to introduce an accelerated solver for systems of linear equations with an infinite precision designed for GPU clusters. The infinite precision means that the system can provide a precise solution without any rounding error. These errors usually come from limited precision of floating point values within their natural computer representation. In a simplified description, the system is using modular arithmetic for transforming an original SLE into dozens of integer SLEs that are solved in parallel via a GPU cluster. In the final step, partial results are used for a calculation of the final solution. The usage of GPUs plays a key role in terms of performance because the whole process is computationally very intensive but also well scalable. An overall performance of the solver directly depends on the cluster's configuration but it can offer the performance far beyond a single computing node.
Název v anglickém jazyce
Solver for Systems of Linear Equations with Infinite Precision on a GPU Cluster
Popis výsledku anglicky
In this paper, we would like to introduce an accelerated solver for systems of linear equations with an infinite precision designed for GPU clusters. The infinite precision means that the system can provide a precise solution without any rounding error. These errors usually come from limited precision of floating point values within their natural computer representation. In a simplified description, the system is using modular arithmetic for transforming an original SLE into dozens of integer SLEs that are solved in parallel via a GPU cluster. In the final step, partial results are used for a calculation of the final solution. The usage of GPUs plays a key role in terms of performance because the whole process is computationally very intensive but also well scalable. An overall performance of the solver directly depends on the cluster's configuration but it can offer the performance far beyond a single computing node.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 20th International Scientific Student Conferenece POSTER 2016
ISBN
978-80-01-05950-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Czech Technical University in Prague
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
24. 5. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—