Robust Control of Vehicle Active Suspension and Its Verification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00314068" target="_blank" >RIV/68407700:21240/17:00314068 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Control of Vehicle Active Suspension and Its Verification
Popis výsledku v původním jazyce
— Suspension systems influence both the comfort and safety of passengers and protect road surface from damage, too. In the paper, energy recuperation and management in automotive suspension systems with linear electric motors that are controlled by a designed robust Hinfinity controller to generate a variable mechanical force for a car damper is presented. The robust controller is necessary to design for the suspension system because the vehicle parameters often vary in a wide range. Especially the body mass varies for every single drive. Vehicle shock absorbers in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to the conventional suspensions with passive elements (springs and dampers). The main advantage of the proposed solution that uses a linear AC motor is the possibility to generate desired forces acting between the unsprung (wheel) and sprung (one-quarter of the car body mass) masses of the car, providing good insulation of the car sprung mass from the road surface roughness and load disturbances. As shown in the paper, under certain circumstances linear motors as actuators enable to transform mechanical energy of the vertical car vibrations to electrical energy, accumulate it, and use it later when needed. Energy consumption and accumulation control enables to reduce or even eliminate the demands on the external power source. In particular, the paper is focused on experiments with active shock absorber that has been taken on a unique verification device we designed and constructed as well as the way we developed an appropriate input signal for the test device that as a real road disturbances act upon the vibration absorber. Obtained results of various experiments are shown and evaluated at the end.
Název v anglickém jazyce
Robust Control of Vehicle Active Suspension and Its Verification
Popis výsledku anglicky
— Suspension systems influence both the comfort and safety of passengers and protect road surface from damage, too. In the paper, energy recuperation and management in automotive suspension systems with linear electric motors that are controlled by a designed robust Hinfinity controller to generate a variable mechanical force for a car damper is presented. The robust controller is necessary to design for the suspension system because the vehicle parameters often vary in a wide range. Especially the body mass varies for every single drive. Vehicle shock absorbers in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to the conventional suspensions with passive elements (springs and dampers). The main advantage of the proposed solution that uses a linear AC motor is the possibility to generate desired forces acting between the unsprung (wheel) and sprung (one-quarter of the car body mass) masses of the car, providing good insulation of the car sprung mass from the road surface roughness and load disturbances. As shown in the paper, under certain circumstances linear motors as actuators enable to transform mechanical energy of the vertical car vibrations to electrical energy, accumulate it, and use it later when needed. Energy consumption and accumulation control enables to reduce or even eliminate the demands on the external power source. In particular, the paper is focused on experiments with active shock absorber that has been taken on a unique verification device we designed and constructed as well as the way we developed an appropriate input signal for the test device that as a real road disturbances act upon the vibration absorber. Obtained results of various experiments are shown and evaluated at the end.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LTV17019" target="_blank" >LTV17019: Podpora práce v Technickém výboru 4.2 Technical Committee on Mechatronic Systems Mezinárodní federace pro automatické řízení (IFAC)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings Book Of Second International Conference on Advances in Science: ICAS 2017
ISBN
978-6-059-54607-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
4-9
Název nakladatele
Technical University Istanbul
Místo vydání
Istanbul
Místo konání akce
Istanbul
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—