Cluster Editing in Multi-Layer and Temporal Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00328472" target="_blank" >RIV/68407700:21240/18:00328472 - isvavai.cz</a>
Výsledek na webu
<a href="http://drops.dagstuhl.de/opus/volltexte/2018/9972/" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2018/9972/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.24" target="_blank" >10.4230/LIPIcs.ISAAC.2018.24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cluster Editing in Multi-Layer and Temporal Graphs
Popis výsledku v původním jazyce
Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and temporal graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More specifically, we want to mark at most d vertices and to transform each layer into a cluster graph using at most k edge additions or deletions per layer so that, if we remove the marked vertices, we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a sequence of layers and we want to transform each layer into a cluster graph so that consecutive layers differ only slightly. That is, we want to transform each layer into a cluster graph with at most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that each two consecutive layers are the same after removing the vertices marked in the first of the two layers. We study the combinatorial structure of the two problems via their parameterized complexity with respect to the parameters d and k, among others. Despite the similar definition, the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is fixed-parameter tractable with running time k^{O(k + d)} s^{O(1)} for inputs of size s, whereas Temporal Cluster Editing is W[1]-hard with respect to k even if d = 3.
Název v anglickém jazyce
Cluster Editing in Multi-Layer and Temporal Graphs
Popis výsledku anglicky
Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and temporal graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More specifically, we want to mark at most d vertices and to transform each layer into a cluster graph using at most k edge additions or deletions per layer so that, if we remove the marked vertices, we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a sequence of layers and we want to transform each layer into a cluster graph so that consecutive layers differ only slightly. That is, we want to transform each layer into a cluster graph with at most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that each two consecutive layers are the same after removing the vertices marked in the first of the two layers. We study the combinatorial structure of the two problems via their parameterized complexity with respect to the parameters d and k, among others. Despite the similar definition, the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is fixed-parameter tractable with running time k^{O(k + d)} s^{O(1)} for inputs of size s, whereas Temporal Cluster Editing is W[1]-hard with respect to k even if d = 3.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20065S" target="_blank" >GA17-20065S: Těsné parametrizované výsledky pro problémy orientované souvislosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
29th International Symposium on Algorithms and Computation (ISAAC 2018)
ISBN
978-3-95977-094-1
ISSN
—
e-ISSN
1868-8969
Počet stran výsledku
13
Strana od-do
"24:1"-"24:13"
Název nakladatele
Dagstuhl Publishing,
Místo vydání
Saarbrücken
Místo konání akce
Jiaoxi
Datum konání akce
16. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—