Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Detuned 2:4 Resonance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00343790" target="_blank" >RIV/68407700:21240/20:00343790 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00332-020-09628-7" target="_blank" >https://doi.org/10.1007/s00332-020-09628-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00332-020-09628-7" target="_blank" >10.1007/s00332-020-09628-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Detuned 2:4 Resonance

  • Popis výsledku v původním jazyce

    We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1 : 2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials, this concerns the short axial orbits, and in galactic dynamics, the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the coordinate planes whence the potential-and the normal form-both have no cubic terms. This Z2xZ2 symmetry turns the 1 : 2 resonance into a higher-order resonance, and one therefore also speaks of the 2 : 4 resonance. In this paper, we study the 2 : 4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.

  • Název v anglickém jazyce

    On the Detuned 2:4 Resonance

  • Popis výsledku anglicky

    We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1 : 2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials, this concerns the short axial orbits, and in galactic dynamics, the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the coordinate planes whence the potential-and the normal form-both have no cubic terms. This Z2xZ2 symmetry turns the 1 : 2 resonance into a higher-order resonance, and one therefore also speaks of the 2 : 4 resonance. In this paper, we study the 2 : 4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrabilní systémy v magnetických polích ve třech prostorových rozměrech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of nonlinear science

  • ISSN

    0938-8974

  • e-ISSN

    1432-1467

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    32

  • Strana od-do

    2513-2544

  • Kód UT WoS článku

    000533816400001

  • EID výsledku v databázi Scopus

    2-s2.0-85085165578