On the Detuned 2:4 Resonance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00343790" target="_blank" >RIV/68407700:21240/20:00343790 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00332-020-09628-7" target="_blank" >https://doi.org/10.1007/s00332-020-09628-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00332-020-09628-7" target="_blank" >10.1007/s00332-020-09628-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Detuned 2:4 Resonance
Popis výsledku v původním jazyce
We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1 : 2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials, this concerns the short axial orbits, and in galactic dynamics, the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the coordinate planes whence the potential-and the normal form-both have no cubic terms. This Z2xZ2 symmetry turns the 1 : 2 resonance into a higher-order resonance, and one therefore also speaks of the 2 : 4 resonance. In this paper, we study the 2 : 4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.
Název v anglickém jazyce
On the Detuned 2:4 Resonance
Popis výsledku anglicky
We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1 : 2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials, this concerns the short axial orbits, and in galactic dynamics, the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the coordinate planes whence the potential-and the normal form-both have no cubic terms. This Z2xZ2 symmetry turns the 1 : 2 resonance into a higher-order resonance, and one therefore also speaks of the 2 : 4 resonance. In this paper, we study the 2 : 4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrabilní systémy v magnetických polích ve třech prostorových rozměrech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of nonlinear science
ISSN
0938-8974
e-ISSN
1432-1467
Svazek periodika
30
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
32
Strana od-do
2513-2544
Kód UT WoS článku
000533816400001
EID výsledku v databázi Scopus
2-s2.0-85085165578