Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Basket Embedding for Sequential Recommendation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00351860" target="_blank" >RIV/68407700:21240/21:00351860 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3460231.3473896" target="_blank" >https://doi.org/10.1145/3460231.3473896</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3460231.3473896" target="_blank" >10.1145/3460231.3473896</a>

Alternativní jazyky

  • Jazyk výsledku

    čeština

  • Název v původním jazyce

    Neural Basket Embedding for Sequential Recommendation

  • Popis výsledku v původním jazyce

    Next basket prediction from historical purchases is quite a complex task, even for e-commerce datasets with a low number of items that are being purchased repeatedly. Neural approaches are not much better in predicting next purchases than simple heuristics. This paper focuses on the challenge of how to encode baskets into efficient neural embedding with low reconstruction error while maintaining the similarity of baskets in the latent space. In our representation, replacing a product with a similar product or increasing quantity will not change the embedding of the basket much. We believe that good basket representation is critical for subsequent prediction. Our analysis shows that state-of-the-art next basket prediction approaches have limitations in their representation of baskets. We would like to focus on this aspect in our future research.

  • Název v anglickém jazyce

    Neural Basket Embedding for Sequential Recommendation

  • Popis výsledku anglicky

    Next basket prediction from historical purchases is quite a complex task, even for e-commerce datasets with a low number of items that are being purchased repeatedly. Neural approaches are not much better in predicting next purchases than simple heuristics. This paper focuses on the challenge of how to encode baskets into efficient neural embedding with low reconstruction error while maintaining the similarity of baskets in the latent space. In our representation, replacing a product with a similar product or increasing quantity will not change the embedding of the basket much. We believe that good basket representation is critical for subsequent prediction. Our analysis shows that state-of-the-art next basket prediction approaches have limitations in their representation of baskets. We would like to focus on this aspect in our future research.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    RecSys '21: Fifteenth ACM Conference on Recommender Systems

  • ISBN

    978-1-4503-8458-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    878-883

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    New York

  • Místo konání akce

    Amsterdam

  • Datum konání akce

    27. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000744461300141