Superintegrability of separable systems with magnetic field: the cylindrical case
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00352346" target="_blank" >RIV/68407700:21240/21:00352346 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/21:00352346
Výsledek na webu
<a href="https://doi.org/10.1088/1751-8121/ac2476" target="_blank" >https://doi.org/10.1088/1751-8121/ac2476</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ac2476" target="_blank" >10.1088/1751-8121/ac2476</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Superintegrability of separable systems with magnetic field: the cylindrical case
Popis výsledku v původním jazyce
We present a general method simplifying the search for additional integrals of motion of three dimensional systems with magnetic fields. The method is suitable for systems possessing at least one conserved canonical momentum in a suitable coordinates system. It reduces the problem either to consideration of lower dimensional systems or of particular constrained forms of the hypothetical integral. In particular, it is applicable to all separable systems in the Euclidean space since they are known to possess at least one cyclic coordinates when magnetic field is present. Next, we focus on systems which separate in the cylindrical coordinates. Using our method, we are able to classify all superintegrable systems of this kind under the assumption that all considered integrals are at most second order in the momenta. In addition to already known systems, several new minimally superintegrable systems are found and we show that no quadratically maximally superintegrable ones can exist. We also construct some examples of systems with higher order integrals.
Název v anglickém jazyce
Superintegrability of separable systems with magnetic field: the cylindrical case
Popis výsledku anglicky
We present a general method simplifying the search for additional integrals of motion of three dimensional systems with magnetic fields. The method is suitable for systems possessing at least one conserved canonical momentum in a suitable coordinates system. It reduces the problem either to consideration of lower dimensional systems or of particular constrained forms of the hypothetical integral. In particular, it is applicable to all separable systems in the Euclidean space since they are known to possess at least one cyclic coordinates when magnetic field is present. Next, we focus on systems which separate in the cylindrical coordinates. Using our method, we are able to classify all superintegrable systems of this kind under the assumption that all considered integrals are at most second order in the momenta. In addition to already known systems, several new minimally superintegrable systems are found and we show that no quadratically maximally superintegrable ones can exist. We also construct some examples of systems with higher order integrals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
54
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
38
Strana od-do
—
Kód UT WoS článku
000701256200001
EID výsledku v databázi Scopus
2-s2.0-85116527464