Switching Activity Reduction in Graphene PN Junction Circuits using Circuit Re-structuring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00366489" target="_blank" >RIV/68407700:21240/23:00366489 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ISDCS58735.2023.10153524" target="_blank" >https://doi.org/10.1109/ISDCS58735.2023.10153524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISDCS58735.2023.10153524" target="_blank" >10.1109/ISDCS58735.2023.10153524</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Switching Activity Reduction in Graphene PN Junction Circuits using Circuit Re-structuring
Popis výsledku v původním jazyce
Graphene PN Junction (GPNJ) logic circuits received significant attention from the researchers thanks to the availability of electrostatically doped graphene PN Junction (GPNJ) device- a promising one for designing low-power, high-speed circuits. Several design approaches for GPNJ logic circuits realizing important arithmetic and arbitrary Boolean functions exist in literature. However, no detailed evaluations of the resulting circuit complexities with respect to relevant cost metrics are reported. It remains open, how do we synthesize GPNJ logic circuits with minimal switching activity, an essential cost metric influencing the dynamic power dissipation in the resulting circuits. In this paper, we introduce a synthesis approach for GPNJ logic circuits that interconnects a set of GPNJ devices in parallel. Such parallel circuit structures ensure the reduction of switching activity in the resulting GPNJ logic circuits. To the best of our knowledge, so far only one research work discussed the computation of switching activity of GPNJ logic circuits. Experimental evaluations confirm that an average 67.35% reduction in switching activity can be achieved using the proposed approach over the existing one.
Název v anglickém jazyce
Switching Activity Reduction in Graphene PN Junction Circuits using Circuit Re-structuring
Popis výsledku anglicky
Graphene PN Junction (GPNJ) logic circuits received significant attention from the researchers thanks to the availability of electrostatically doped graphene PN Junction (GPNJ) device- a promising one for designing low-power, high-speed circuits. Several design approaches for GPNJ logic circuits realizing important arithmetic and arbitrary Boolean functions exist in literature. However, no detailed evaluations of the resulting circuit complexities with respect to relevant cost metrics are reported. It remains open, how do we synthesize GPNJ logic circuits with minimal switching activity, an essential cost metric influencing the dynamic power dissipation in the resulting circuits. In this paper, we introduce a synthesis approach for GPNJ logic circuits that interconnects a set of GPNJ devices in parallel. Such parallel circuit structures ensure the reduction of switching activity in the resulting GPNJ logic circuits. To the best of our knowledge, so far only one research work discussed the computation of switching activity of GPNJ logic circuits. Experimental evaluations confirm that an average 67.35% reduction in switching activity can be achieved using the proposed approach over the existing one.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 6th International Symposium on Devices, Circuits and Systems
ISBN
979-8-3503-1504-2
ISSN
2767-9837
e-ISSN
2767-9837
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
Hiroshima University
Místo vydání
Hiroshima
Místo konání akce
Virtual conference
Datum konání akce
29. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—