Weather4cast at NeurIPS 2022: Super-Resolution Rain Movie Prediction under Spatio-temporal Shifts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368674" target="_blank" >RIV/68407700:21240/23:00368674 - isvavai.cz</a>
Výsledek na webu
<a href="https://proceedings.mlr.press/v220/gruca22a" target="_blank" >https://proceedings.mlr.press/v220/gruca22a</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weather4cast at NeurIPS 2022: Super-Resolution Rain Movie Prediction under Spatio-temporal Shifts
Popis výsledku v původním jazyce
Weather4cast again advanced modern algorithms in AI and machine learning through a highly topical interdisciplinary competition challenge: The prediction of hi-res rain radar movies from multi-band satellite sensors, requiring data fusion, multi-channel video frame prediction, and super-resolution. Accurate predictions of rain events are becoming ever more critical, with climate change increasing the frequency of unexpected rainfall. The resulting models will have a particular impact where costly weather radar is not available. We here present highlights and insights emerging from the thirty teams participating from over a dozen countries. To extract relevant patterns, models were challenged by spatio-temporal shifts. Geometric data augmentation and test-time ensemble models with a suitable smoother loss helped this transfer learning. Even though, in ablation, static information like geographical location and elevation was not linked to performance, the general success of models incorporating physics in this competition suggests that approaches combining machine learning with application domain knowledge seem a promising avenue for future research. Weather4cast will continue to explore the powerful benchmark reference data set introduced here, advancing competition tasks to quantitative predictions, and exploring the effects of metric choice on model performance and qualitative prediction properties.
Název v anglickém jazyce
Weather4cast at NeurIPS 2022: Super-Resolution Rain Movie Prediction under Spatio-temporal Shifts
Popis výsledku anglicky
Weather4cast again advanced modern algorithms in AI and machine learning through a highly topical interdisciplinary competition challenge: The prediction of hi-res rain radar movies from multi-band satellite sensors, requiring data fusion, multi-channel video frame prediction, and super-resolution. Accurate predictions of rain events are becoming ever more critical, with climate change increasing the frequency of unexpected rainfall. The resulting models will have a particular impact where costly weather radar is not available. We here present highlights and insights emerging from the thirty teams participating from over a dozen countries. To extract relevant patterns, models were challenged by spatio-temporal shifts. Geometric data augmentation and test-time ensemble models with a suitable smoother loss helped this transfer learning. Even though, in ablation, static information like geographical location and elevation was not linked to performance, the general success of models incorporating physics in this competition suggests that approaches combining machine learning with application domain knowledge seem a promising avenue for future research. Weather4cast will continue to explore the powerful benchmark reference data set introduced here, advancing competition tasks to quantitative predictions, and exploring the effects of metric choice on model performance and qualitative prediction properties.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the NeurIPS 2022 Competitions Track
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Počet stran výsledku
21
Strana od-do
292-312
Název nakladatele
Proceedings of Machine Learning Research
Místo vydání
—
Místo konání akce
New Orleans
Datum konání akce
28. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—