New classes of quadratically integrable systems with velocity dependent potentials: non-subgroup type cases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00369544" target="_blank" >RIV/68407700:21240/23:00369544 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/23:00369544
Výsledek na webu
<a href="https://doi.org/10.1140/epjp/s13360-023-04464-6" target="_blank" >https://doi.org/10.1140/epjp/s13360-023-04464-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/s13360-023-04464-6" target="_blank" >10.1140/epjp/s13360-023-04464-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New classes of quadratically integrable systems with velocity dependent potentials: non-subgroup type cases
Popis výsledku v původním jazyce
We study quadratic integrability of systems with velocity dependent potentials in three-dimensional Euclidean space. Unlike in the case with only scalar potential, quadratic integrability with velocity dependent potentials does not imply separability in the configuration space. The leading order terms in the pairs of commuting integrals can either generalize or have no relation to the forms leading to separation in the absence of a vector potential. We call such pairs of integrals generalized, to distinguish them from the standard ones, which would correspond to separation. Here we focus on three cases of generalized non-subgroup type integrals, namely elliptic cylindrical, prolate/oblate spheroidal and circular parabolic integrals, together with one case not related to any coordinate system. We find two new integrable systems, non-separable in the configuration space, both with generalized elliptic cylindrical integrals. In the other cases, all systems found were already known and possess standard pairs of integrals. In the limit of vanishing vector potential, both systems reduce to free motion and therefore separate in every orthogonal coordinate system.
Název v anglickém jazyce
New classes of quadratically integrable systems with velocity dependent potentials: non-subgroup type cases
Popis výsledku anglicky
We study quadratic integrability of systems with velocity dependent potentials in three-dimensional Euclidean space. Unlike in the case with only scalar potential, quadratic integrability with velocity dependent potentials does not imply separability in the configuration space. The leading order terms in the pairs of commuting integrals can either generalize or have no relation to the forms leading to separation in the absence of a vector potential. We call such pairs of integrals generalized, to distinguish them from the standard ones, which would correspond to separation. Here we focus on three cases of generalized non-subgroup type integrals, namely elliptic cylindrical, prolate/oblate spheroidal and circular parabolic integrals, together with one case not related to any coordinate system. We find two new integrable systems, non-separable in the configuration space, both with generalized elliptic cylindrical integrals. In the other cases, all systems found were already known and possess standard pairs of integrals. In the limit of vanishing vector potential, both systems reduce to free motion and therefore separate in every orthogonal coordinate system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EUROPEAN PHYSICAL JOURNAL PLUS
ISSN
2190-5444
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
001075707200010
EID výsledku v databázi Scopus
2-s2.0-85172394124