Generating Faster Algorithms for d-Path Vertex Cover
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00371545" target="_blank" >RIV/68407700:21240/23:00371545 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-43380-1_12" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43380-1_12" target="_blank" >10.1007/978-3-031-43380-1_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating Faster Algorithms for d-Path Vertex Cover
Popis výsledku v původním jazyce
Many algorithms which exactly solve hard problems require branching on more or less complex structures in order to do their job. Those who design such algorithms often find themselves doing a meticulous analysis of numerous different cases in order to identify these structures and design suitable branching rules, all done by hand. This process tends to be error prone and often the resulting algorithm may be difficult to implement in practice. In this work, we aim to automate a part of this process and focus on the simplicity of the resulting implementation. We showcase our approach on the following problem. For a constant d, the d-Path Vertex Cover problem (d-PVC) is as follows: Given an undirected graph and an integer k, find a subset of at most k vertices of the graph, such that their deletion results in a graph not containing a path on d vertices as a subgraph. We develop a fully automated framework to generate parameterized branching algorithms for the problem and obtain algorithms outperforming those previously known for 3 < d < 8, e.g., we show that 5-PVC can be solved in O(2.7^kn^{O(1)}) time.
Název v anglickém jazyce
Generating Faster Algorithms for d-Path Vertex Cover
Popis výsledku anglicky
Many algorithms which exactly solve hard problems require branching on more or less complex structures in order to do their job. Those who design such algorithms often find themselves doing a meticulous analysis of numerous different cases in order to identify these structures and design suitable branching rules, all done by hand. This process tends to be error prone and often the resulting algorithm may be difficult to implement in practice. In this work, we aim to automate a part of this process and focus on the simplicity of the resulting implementation. We showcase our approach on the following problem. For a constant d, the d-Path Vertex Cover problem (d-PVC) is as follows: Given an undirected graph and an integer k, find a subset of at most k vertices of the graph, such that their deletion results in a graph not containing a path on d vertices as a subgraph. We develop a fully automated framework to generate parameterized branching algorithms for the problem and obtain algorithms outperforming those previously known for 3 < d < 8, e.g., we show that 5-PVC can be solved in O(2.7^kn^{O(1)}) time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science
ISBN
978-3-031-43380-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
157-171
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Fribourg
Datum konání akce
28. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—