Cluster Editing for Multi-Layer and Temporal Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00377842" target="_blank" >RIV/68407700:21240/24:00377842 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00224-024-10174-y" target="_blank" >https://doi.org/10.1007/s00224-024-10174-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00224-024-10174-y" target="_blank" >10.1007/s00224-024-10174-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cluster Editing for Multi-Layer and Temporal Graphs
Popis výsledku v původním jazyce
Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and temporal graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More specifically, we want to mark at most d vertices and to transform each layer into a cluster graph using at most k edge additions or deletions per layer so that, if we remove the marked vertices, we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a sequence of layers and we want to transform each layer into a cluster graph so that consecutive layers differ only slightly. That is, we want to transform each layer into a cluster graph with at most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that each two consecutive layers are the same after removing the vertices marked in the first of the two layers. We study the combinatorial structure of the two problems via their parameterized complexity with respect to the parameters d and k, among others. Despite the similar definition, the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is fixed-parameter tractable with running time k^{O(k+d)}s^{O(1)} for inputs of size s, whereas Temporal Cluster Editing is W[1]-hard with respect to k even if d=3.
Název v anglickém jazyce
Cluster Editing for Multi-Layer and Temporal Graphs
Popis výsledku anglicky
Motivated by the recent rapid growth of research for algorithms to cluster multi-layer and temporal graphs, we study extensions of the classical Cluster Editing problem. In Multi-Layer Cluster Editing we receive a set of graphs on the same vertex set, called layers and aim to transform all layers into cluster graphs (disjoint unions of cliques) that differ only slightly. More specifically, we want to mark at most d vertices and to transform each layer into a cluster graph using at most k edge additions or deletions per layer so that, if we remove the marked vertices, we obtain the same cluster graph in all layers. In Temporal Cluster Editing we receive a sequence of layers and we want to transform each layer into a cluster graph so that consecutive layers differ only slightly. That is, we want to transform each layer into a cluster graph with at most k edge additions or deletions and to mark a distinct set of d vertices in each layer so that each two consecutive layers are the same after removing the vertices marked in the first of the two layers. We study the combinatorial structure of the two problems via their parameterized complexity with respect to the parameters d and k, among others. Despite the similar definition, the two problems behave quite differently: In particular, Multi-Layer Cluster Editing is fixed-parameter tractable with running time k^{O(k+d)}s^{O(1)} for inputs of size s, whereas Temporal Cluster Editing is W[1]-hard with respect to k even if d=3.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
1433-0490
Svazek periodika
68
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
52
Strana od-do
1239-1290
Kód UT WoS článku
001261989700001
EID výsledku v databázi Scopus
2-s2.0-85197891440