Solving Multi-Agent Pathfinding with Stochastic Local Search SAT Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00379350" target="_blank" >RIV/68407700:21240/24:00379350 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0012944800003822" target="_blank" >https://doi.org/10.5220/0012944800003822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012944800003822" target="_blank" >10.5220/0012944800003822</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving Multi-Agent Pathfinding with Stochastic Local Search SAT Algorithms
Popis výsledku v původním jazyce
This paper explores the suitability of Stochastic Local Search (SLS) solvers for Multi-Agent Pathfinding (MAPF) translated into the SAT domain. Traditionally, SAT encodings of MAPF have been tackled using Conflict-Driven Clause Learning (CDCL) solvers, but this work investigates the potential of SLS solvers, particularly ProbSAT, in solving MAPF under the makespan objective. By employing the MDD-SAT approach and comparing the performance of ProbSAT against the Glucose 4 CDCL solver, the effects of eager and lazy encodings are evaluated, as well as the benefit of providing initial variable assignments. Results show that ProbSAT can effectively solve MAPF instances, especially when initial assignments based on agents' shortest paths are provided. This study suggests that SLS solvers can compete with CDCL solvers in specific MAPF scenarios and highlights future research directions for optimizing SLS performance in MAPF.
Název v anglickém jazyce
Solving Multi-Agent Pathfinding with Stochastic Local Search SAT Algorithms
Popis výsledku anglicky
This paper explores the suitability of Stochastic Local Search (SLS) solvers for Multi-Agent Pathfinding (MAPF) translated into the SAT domain. Traditionally, SAT encodings of MAPF have been tackled using Conflict-Driven Clause Learning (CDCL) solvers, but this work investigates the potential of SLS solvers, particularly ProbSAT, in solving MAPF under the makespan objective. By employing the MDD-SAT approach and comparing the performance of ProbSAT against the Glucose 4 CDCL solver, the effects of eager and lazy encodings are evaluated, as well as the benefit of providing initial variable assignments. Results show that ProbSAT can effectively solve MAPF instances, especially when initial assignments based on agents' shortest paths are provided. This study suggests that SLS solvers can compete with CDCL solvers in specific MAPF scenarios and highlights future research directions for optimizing SLS performance in MAPF.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
21st International Conference on Informatics in Control, Automation and Robotics - Volume 1
ISBN
978-989-758-717-7
ISSN
2184-2809
e-ISSN
—
Počet stran výsledku
12
Strana od-do
67-78
Název nakladatele
Science and Technology Publications, Lda
Místo vydání
Setúbal
Místo konání akce
Porto
Datum konání akce
18. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—