On kernels for d-path vertex cover
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00379997" target="_blank" >RIV/68407700:21240/24:00379997 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jcss.2024.103531" target="_blank" >https://doi.org/10.1016/j.jcss.2024.103531</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcss.2024.103531" target="_blank" >10.1016/j.jcss.2024.103531</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On kernels for d-path vertex cover
Popis výsledku v původním jazyce
In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a graph G, the problem requires finding whether there exists a set of at most k vertices whose removal from G results in a graph that does not contain a path (not necessarily induced) with d vertices. It is known that d-PVC is NP-complete for d >= 2. Since the problem generalizes to d-Hitting Set, it is known to admit a kernel with O(dk(d)) edges. We improve on this by giving better kernels. Specifically, we give kernels with O(k(2)) vertices and edges for the cases when d = 4 and d = 5. Further, we give a kernel with O(k(4)d(2d+9)) vertices and edges for general d. (c) 2024 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On kernels for d-path vertex cover
Popis výsledku anglicky
In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a graph G, the problem requires finding whether there exists a set of at most k vertices whose removal from G results in a graph that does not contain a path (not necessarily induced) with d vertices. It is known that d-PVC is NP-complete for d >= 2. Since the problem generalizes to d-Hitting Set, it is known to admit a kernel with O(dk(d)) edges. We improve on this by giving better kernels. Specifically, we give kernels with O(k(2)) vertices and edges for the cases when d = 4 and d = 5. Further, we give a kernel with O(k(4)d(2d+9)) vertices and edges for general d. (c) 2024 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computer and System Sciences
ISSN
0022-0000
e-ISSN
1090-2724
Svazek periodika
144
Číslo periodika v rámci svazku
Sep
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001348192600001
EID výsledku v databázi Scopus
2-s2.0-85190064950