Merging Bayesian Networks based on different types of input knowledge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F18%3A00326495" target="_blank" >RIV/68407700:21260/18:00326495 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Merging Bayesian Networks based on different types of input knowledge
Popis výsledku v původním jazyce
Bayesian networks are one of the most suitable tools for traffic accident data analysis. A well-designed and trained Bayesian network is the first assumption for obtaining good results. Two sources of information can be used for this purpose. They are information extracted from measured historical data and also information specified by an expert. The latter one can also involve some generally known rules or knowledge based on traffic regulations or safety rules. Mostly, only one of these sources of information is used. After training the network can be evaluated with standard methods based on likelihood or prediction error evaluation. The goal of this paper is to show that if two Bayesian networks are created, e.g. one from the data and second from the expert knowledge, they can be merged into one which joins the objective information from data with the subjective opinion from expert and which has better evaluation than the original ones.
Název v anglickém jazyce
Merging Bayesian Networks based on different types of input knowledge
Popis výsledku anglicky
Bayesian networks are one of the most suitable tools for traffic accident data analysis. A well-designed and trained Bayesian network is the first assumption for obtaining good results. Two sources of information can be used for this purpose. They are information extracted from measured historical data and also information specified by an expert. The latter one can also involve some generally known rules or knowledge based on traffic regulations or safety rules. Mostly, only one of these sources of information is used. After training the network can be evaluated with standard methods based on likelihood or prediction error evaluation. The goal of this paper is to show that if two Bayesian networks are created, e.g. one from the data and second from the expert knowledge, they can be merged into one which joins the objective information from data with the subjective opinion from expert and which has better evaluation than the original ones.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Young Transportation Engineers Conference 2018
ISBN
978-80-01-06464-1
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
53-61
Název nakladatele
Fakulta dopravní
Místo vydání
Praha
Místo konání akce
Praha, Horská 3
Datum konání akce
1. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—