A Novel Algorithm for Merging Bayesian Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00373687" target="_blank" >RIV/68407700:21260/23:00373687 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/sym15071461" target="_blank" >https://doi.org/10.3390/sym15071461</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym15071461" target="_blank" >10.3390/sym15071461</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Algorithm for Merging Bayesian Networks
Popis výsledku v původním jazyce
The article presents a novel algorithm for merging Bayesian networks generated by different methods, such as expert knowledge and data-driven approaches, while leveraging a symmetry-based approach. The algorithm combines the strengths of each input network to create a more comprehensive and accurate network. Evaluations on traffic accident data from Prague in the Czech Republic and accidents on railway crossings demonstrate superior predictive performance, as measured by prediction error metric. The algorithm identifies and incorporates symmetric nodes into the final network, ensuring consistent representations across different methods. The merged network, incorporating nodes selected from both the expert and algorithm networks, provides a more comprehensive and accurate representation of the relationships among variables in the dataset. Future research could focus on extending the algorithm to deal with cycles and improving the handling of conditional probability tables. Overall, the proposed algorithm demonstrates the effectiveness of combining different sources of knowledge in Bayesian network modeling.
Název v anglickém jazyce
A Novel Algorithm for Merging Bayesian Networks
Popis výsledku anglicky
The article presents a novel algorithm for merging Bayesian networks generated by different methods, such as expert knowledge and data-driven approaches, while leveraging a symmetry-based approach. The algorithm combines the strengths of each input network to create a more comprehensive and accurate network. Evaluations on traffic accident data from Prague in the Czech Republic and accidents on railway crossings demonstrate superior predictive performance, as measured by prediction error metric. The algorithm identifies and incorporates symmetric nodes into the final network, ensuring consistent representations across different methods. The merged network, incorporating nodes selected from both the expert and algorithm networks, provides a more comprehensive and accurate representation of the relationships among variables in the dataset. Future research could focus on extending the algorithm to deal with cycles and improving the handling of conditional probability tables. Overall, the proposed algorithm demonstrates the effectiveness of combining different sources of knowledge in Bayesian network modeling.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
15
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001069463500001
EID výsledku v databázi Scopus
2-s2.0-85166225430