Estimation of discrete data using binomial mixture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F20%3A00341899" target="_blank" >RIV/68407700:21260/20:00341899 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/SCSP49987.2020.9133938" target="_blank" >https://doi.org/10.1109/SCSP49987.2020.9133938</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCSP49987.2020.9133938" target="_blank" >10.1109/SCSP49987.2020.9133938</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of discrete data using binomial mixture
Popis výsledku v původním jazyce
Data analysis is an important method for obtaining information which is useful in many projects such as e.g. Smart Cities. Common data sources are questionnaires, their output mainly purveys discrete data. The most common description of discrete data is through categorical models. These models have several advantages such as flexibility but there are also disadvantages such as a huge dimension of the table expressing this distribution for more variables and values and their overparametrization. The aim of this paper is to replace the categorical distribution by another discrete distribution with a lower number of parameters while maintaining the model quality. Binomial distribution was chosen a suitable one because it is determined only by one parameter and this parameter allows to shape the probability function of binomial distribution well. The output of the paper is the presented model of mixture with binomial components. The suggested estimation algorithms are tested on real traffic data.
Název v anglickém jazyce
Estimation of discrete data using binomial mixture
Popis výsledku anglicky
Data analysis is an important method for obtaining information which is useful in many projects such as e.g. Smart Cities. Common data sources are questionnaires, their output mainly purveys discrete data. The most common description of discrete data is through categorical models. These models have several advantages such as flexibility but there are also disadvantages such as a huge dimension of the table expressing this distribution for more variables and values and their overparametrization. The aim of this paper is to replace the categorical distribution by another discrete distribution with a lower number of parameters while maintaining the model quality. Binomial distribution was chosen a suitable one because it is determined only by one parameter and this parameter allows to shape the probability function of binomial distribution well. The output of the paper is the presented model of mixture with binomial components. The suggested estimation algorithms are tested on real traffic data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 Smart City Symposium Prague
ISBN
978-1-7281-6821-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE Press
Místo vydání
New York
Místo konání akce
Prague
Datum konání akce
25. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—