Floppy Logic as a Generalization of Standard Boolean Logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F20%3A00344283" target="_blank" >RIV/68407700:21260/20:00344283 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/NNW.2020.30.014" target="_blank" >https://doi.org/10.14311/NNW.2020.30.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2020.30.014" target="_blank" >10.14311/NNW.2020.30.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Floppy Logic as a Generalization of Standard Boolean Logic
Popis výsledku v původním jazyce
The topic of this article is floppy logic, a new multi-valued logic. Floppy logic is related to fuzzy logic and the theory of probability, but it also has interesting links to probability logic and standard Boolean logic. It provides a consistent and simple theory that is easy to apply in practice. This article examines the isomorphism theorem, which plays an important role in floppy logic. The theorem is described and proved. The most important consequences of the isomorphism theorem are: 1. All statements which are equivalent in standard Boolean logic are also equivalent in floppy logic. 2. Floppy logic has all the properties of standard Boolean logic which can be formulated as an equivalence. These include, for example, distributivity, the contradiction law, the law of excluded middle, and others. The article mainly examines floppy implication. We show that floppy implication does not satisfy Adam’s Thesis and that floppy logic is not limited by Lewis’ triviality result. We also present a range of inference rules which are generalizations of modus ponens and modus tollens. These rules hold in floppy logic, and of course, also apply to standard Boolean logic. All these results lead us to the notion that floppy logic is a many-valued generalization of standard Boolean logic.
Název v anglickém jazyce
Floppy Logic as a Generalization of Standard Boolean Logic
Popis výsledku anglicky
The topic of this article is floppy logic, a new multi-valued logic. Floppy logic is related to fuzzy logic and the theory of probability, but it also has interesting links to probability logic and standard Boolean logic. It provides a consistent and simple theory that is easy to apply in practice. This article examines the isomorphism theorem, which plays an important role in floppy logic. The theorem is described and proved. The most important consequences of the isomorphism theorem are: 1. All statements which are equivalent in standard Boolean logic are also equivalent in floppy logic. 2. Floppy logic has all the properties of standard Boolean logic which can be formulated as an equivalence. These include, for example, distributivity, the contradiction law, the law of excluded middle, and others. The article mainly examines floppy implication. We show that floppy implication does not satisfy Adam’s Thesis and that floppy logic is not limited by Lewis’ triviality result. We also present a range of inference rules which are generalizations of modus ponens and modus tollens. These rules hold in floppy logic, and of course, also apply to standard Boolean logic. All these results lead us to the notion that floppy logic is a many-valued generalization of standard Boolean logic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
193-209
Kód UT WoS článku
000572850100004
EID výsledku v databázi Scopus
2-s2.0-85092418146