Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Floppy Logic as a Generalization of Standard Boolean Logic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F20%3A00344283" target="_blank" >RIV/68407700:21260/20:00344283 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.14311/NNW.2020.30.014" target="_blank" >https://doi.org/10.14311/NNW.2020.30.014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2020.30.014" target="_blank" >10.14311/NNW.2020.30.014</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Floppy Logic as a Generalization of Standard Boolean Logic

  • Popis výsledku v původním jazyce

    The topic of this article is floppy logic, a new multi-valued logic. Floppy logic is related to fuzzy logic and the theory of probability, but it also has interesting links to probability logic and standard Boolean logic. It provides a consistent and simple theory that is easy to apply in practice. This article examines the isomorphism theorem, which plays an important role in floppy logic. The theorem is described and proved. The most important consequences of the isomorphism theorem are: 1. All statements which are equivalent in standard Boolean logic are also equivalent in floppy logic. 2. Floppy logic has all the properties of standard Boolean logic which can be formulated as an equivalence. These include, for example, distributivity, the contradiction law, the law of excluded middle, and others. The article mainly examines floppy implication. We show that floppy implication does not satisfy Adam’s Thesis and that floppy logic is not limited by Lewis’ triviality result. We also present a range of inference rules which are generalizations of modus ponens and modus tollens. These rules hold in floppy logic, and of course, also apply to standard Boolean logic. All these results lead us to the notion that floppy logic is a many-valued generalization of standard Boolean logic.

  • Název v anglickém jazyce

    Floppy Logic as a Generalization of Standard Boolean Logic

  • Popis výsledku anglicky

    The topic of this article is floppy logic, a new multi-valued logic. Floppy logic is related to fuzzy logic and the theory of probability, but it also has interesting links to probability logic and standard Boolean logic. It provides a consistent and simple theory that is easy to apply in practice. This article examines the isomorphism theorem, which plays an important role in floppy logic. The theorem is described and proved. The most important consequences of the isomorphism theorem are: 1. All statements which are equivalent in standard Boolean logic are also equivalent in floppy logic. 2. Floppy logic has all the properties of standard Boolean logic which can be formulated as an equivalence. These include, for example, distributivity, the contradiction law, the law of excluded middle, and others. The article mainly examines floppy implication. We show that floppy implication does not satisfy Adam’s Thesis and that floppy logic is not limited by Lewis’ triviality result. We also present a range of inference rules which are generalizations of modus ponens and modus tollens. These rules hold in floppy logic, and of course, also apply to standard Boolean logic. All these results lead us to the notion that floppy logic is a many-valued generalization of standard Boolean logic.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    17

  • Strana od-do

    193-209

  • Kód UT WoS článku

    000572850100004

  • EID výsledku v databázi Scopus

    2-s2.0-85092418146