Fuzzy Sets in Stochastic Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F21%3A00357396" target="_blank" >RIV/68407700:21260/21:00357396 - isvavai.cz</a>
Výsledek na webu
<a href="https://dspace.cvut.cz/handle/10467/99090" target="_blank" >https://dspace.cvut.cz/handle/10467/99090</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy Sets in Stochastic Modelling
Popis výsledku v původním jazyce
The text introduces floppy logic, which is a new multi-valued logic. Floppy logic consistently links fuzzy sets to probability theory. The most important results of this work include proof that all statements equivalent in standard two-valued logic are also equivalent in floppy logic. It follows that floppy logic retains all the properties of standard two-valued logic which can be expressed as an equivalence. Another important result is the proof that floppy logic is a model of Kolmogorov probability theory. We can therefore apply all the concepts and tools of probability theory in floppy logic. Much focus was given to practical examples of work with floppy logic. Floppy logic is compared to several other theories and also presented in historical context.
Název v anglickém jazyce
Fuzzy Sets in Stochastic Modelling
Popis výsledku anglicky
The text introduces floppy logic, which is a new multi-valued logic. Floppy logic consistently links fuzzy sets to probability theory. The most important results of this work include proof that all statements equivalent in standard two-valued logic are also equivalent in floppy logic. It follows that floppy logic retains all the properties of standard two-valued logic which can be expressed as an equivalence. Another important result is the proof that floppy logic is a model of Kolmogorov probability theory. We can therefore apply all the concepts and tools of probability theory in floppy logic. Much focus was given to practical examples of work with floppy logic. Floppy logic is compared to several other theories and also presented in historical context.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů