Absolutní spojitost spectra pro periodicky modulované měkké dráty v R^3
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F07%3A04133573" target="_blank" >RIV/68407700:21340/07:04133573 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389005:_____/07:00096360
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Absolute Continuity of the Spectrum for Periodically Modulated Leaky Wires in R^3
Popis výsledku v původním jazyce
We consider a model of leaky quantum wires in three dimensions. The Hamiltonian is a singular perturbation of the Laplacian supported by a line with the coupling which is bounded and periodically modulated along the line. We demonstrate that such a system has a purely absolutely continuous spectrum and its negative part has band structure with an at most finite number of gaps. This result is extended also to the situation when there is an infinite number of the lines supporting the perturbations arranged periodically in one direction.
Název v anglickém jazyce
Absolute Continuity of the Spectrum for Periodically Modulated Leaky Wires in R^3
Popis výsledku anglicky
We consider a model of leaky quantum wires in three dimensions. The Hamiltonian is a singular perturbation of the Laplacian supported by a line with the coupling which is bounded and periodically modulated along the line. We demonstrate that such a system has a purely absolutely continuous spectrum and its negative part has band structure with an at most finite number of gaps. This result is extended also to the situation when there is an infinite number of the lines supporting the perturbations arranged periodically in one direction.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
241-263
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—