Casimir Invariants of Lie Algebras with Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00196523" target="_blank" >RIV/68407700:21340/12:00196523 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cvut.cz/informace-pro-zamestnance/habilitace/hp/resolveuid/b7998f9c04192b879827ce83e724dc99" target="_blank" >http://www.cvut.cz/informace-pro-zamestnance/habilitace/hp/resolveuid/b7998f9c04192b879827ce83e724dc99</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Casimir Invariants of Lie Algebras with Applications
Popis výsledku v původním jazyce
Casimir invariants and generalized Casimir invariants play an important role in the theory of Lie algebras, in particular in the theory of their representations. They are also crucial for many applications of Lie algebras in modern physics. We introducethe notion of Casimir invariant as an element of the center of the universal enveloping algebra of the given Lie algebra and indicate its relevance for the theory of representations of Lie algebras, in particular for identification of irreducible representations. Next, we discuss some of its applications in quantum physics: in the theory of angular momentum; irreducible representations of the Poincare algebra, i.e. mathematical description of particles in quantum field theory; and Lie{algebraic computation of the hydrogen spectrum. It turns out that Casimir invariants also can be naturally identified with polynomial invariants of the coadjoint representation of the given Lie algebra. We call the nonpolynomial invariants of the coadjoint
Název v anglickém jazyce
Casimir Invariants of Lie Algebras with Applications
Popis výsledku anglicky
Casimir invariants and generalized Casimir invariants play an important role in the theory of Lie algebras, in particular in the theory of their representations. They are also crucial for many applications of Lie algebras in modern physics. We introducethe notion of Casimir invariant as an element of the center of the universal enveloping algebra of the given Lie algebra and indicate its relevance for the theory of representations of Lie algebras, in particular for identification of irreducible representations. Next, we discuss some of its applications in quantum physics: in the theory of angular momentum; irreducible representations of the Poincare algebra, i.e. mathematical description of particles in quantum field theory; and Lie{algebraic computation of the hydrogen spectrum. It turns out that Casimir invariants also can be naturally identified with polynomial invariants of the coadjoint representation of the given Lie algebra. We call the nonpolynomial invariants of the coadjoint
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů