Lie algebras: their structure and applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00196526" target="_blank" >RIV/68407700:21340/12:00196526 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lie algebras: their structure and applications
Popis výsledku v původním jazyce
We present in this thesis a selection of our nine recent research papers. Although their topics are somewhat varied, they share one common feature: they involve Lie algebras and Lie groups either as a main subject of investigation or as an essential tool. The papers contained in the thesis are divided into three thematic chapters preceded by an introductory review of our notation and essential background. In the first group consisting of four papers in Chapter 2 we study the structure of certain classesof solvable Lie algebras, establish their basic properties and construct their generalized Casimir invariants. We also investigate the structure of Lie algebras with nontrivial Levi decomposition, i.e. of algebras which are neither semisimple nor solvable. The notation and methods used in these papers are introduced in Sections 1.1, 1.2. In the second group of two papers in Chapter 3 we compute the Lie superalgebra of point (super)symmetries of certain partial differential equations def
Název v anglickém jazyce
Lie algebras: their structure and applications
Popis výsledku anglicky
We present in this thesis a selection of our nine recent research papers. Although their topics are somewhat varied, they share one common feature: they involve Lie algebras and Lie groups either as a main subject of investigation or as an essential tool. The papers contained in the thesis are divided into three thematic chapters preceded by an introductory review of our notation and essential background. In the first group consisting of four papers in Chapter 2 we study the structure of certain classesof solvable Lie algebras, establish their basic properties and construct their generalized Casimir invariants. We also investigate the structure of Lie algebras with nontrivial Levi decomposition, i.e. of algebras which are neither semisimple nor solvable. The notation and methods used in these papers are introduced in Sections 1.1, 1.2. In the second group of two papers in Chapter 3 we compute the Lie superalgebra of point (super)symmetries of certain partial differential equations def
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů