Role of information theoretic uncertainty relations in quantum theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00231151" target="_blank" >RIV/68407700:21340/15:00231151 - isvavai.cz</a>
Výsledek na webu
<a href="http://ac.els-cdn.com/S0003491615000342/1-s2.0-S0003491615000342-main.pdf?_tid=01020544-4fe1-11e5-99ab-00000aacb360&acdnat=1441026530_b905b986d66adbb314dae69f8cf04a16" target="_blank" >http://ac.els-cdn.com/S0003491615000342/1-s2.0-S0003491615000342-main.pdf?_tid=01020544-4fe1-11e5-99ab-00000aacb360&acdnat=1441026530_b905b986d66adbb314dae69f8cf04a16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2015.01.031" target="_blank" >10.1016/j.aop.2015.01.031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Role of information theoretic uncertainty relations in quantum theory
Popis výsledku v původním jazyce
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Renyi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson-Schrodinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrodinger cat states. Again, improvement over both the RobertsonSchrodinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations
Název v anglickém jazyce
Role of information theoretic uncertainty relations in quantum theory
Popis výsledku anglicky
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Renyi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson-Schrodinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrodinger cat states. Again, improvement over both the RobertsonSchrodinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-07983S" target="_blank" >GA14-07983S: Struktura vakua v kvantově polních teoriích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Physics
ISSN
0003-4916
e-ISSN
—
Svazek periodika
355
Číslo periodika v rámci svazku
Apr
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
87-114
Kód UT WoS článku
000353365900007
EID výsledku v databázi Scopus
2-s2.0-84923261054