Periodicity of Generalized Pseudostandard Words
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00236156" target="_blank" >RIV/68407700:21340/15:00236156 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Periodicity of Generalized Pseudostandard Words
Popis výsledku v původním jazyce
Generalized pseudostandard words were introduced by De Luca and de Luca in. Recently, they have been studied intensively, nevertheless in comparison to the palindromic and pseudopalindromic closure, there are still a lot of open problems concerning generalized pseudopalindromic closure and the associated generalized pseudostandard words. We present here a necessary and sufficient condition for their periodicity over ternary alphabet. More precisely, we describe how the directive bi-sequence of a generalized pseudostandard word has to look like in order to correspond to a periodic word. We extend thus our previous result, where we found such a condition over binary alphabet. It is interesting that the conditions on periodicity over binary and ternary alphabet are surprisingly different. We state moreover as a conjecture a necessary and sufficient condition for periodicity over any alphabet.
Název v anglickém jazyce
Periodicity of Generalized Pseudostandard Words
Popis výsledku anglicky
Generalized pseudostandard words were introduced by De Luca and de Luca in. Recently, they have been studied intensively, nevertheless in comparison to the palindromic and pseudopalindromic closure, there are still a lot of open problems concerning generalized pseudopalindromic closure and the associated generalized pseudostandard words. We present here a necessary and sufficient condition for their periodicity over ternary alphabet. More precisely, we describe how the directive bi-sequence of a generalized pseudostandard word has to look like in order to correspond to a periodic word. We extend thus our previous result, where we found such a condition over binary alphabet. It is interesting that the conditions on periodicity over binary and ternary alphabet are surprisingly different. We state moreover as a conjecture a necessary and sufficient condition for periodicity over any alphabet.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-03538S" target="_blank" >GA13-03538S: Algoritmy, dynamika a geometrie numeračních systémů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů