Dynamics of dislocations described as evolving curves interacting with obstacles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00237696" target="_blank" >RIV/68407700:21340/16:00237696 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/0965-0393/24/3/035003" target="_blank" >http://dx.doi.org/10.1088/0965-0393/24/3/035003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0965-0393/24/3/035003" target="_blank" >10.1088/0965-0393/24/3/035003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics of dislocations described as evolving curves interacting with obstacles
Popis výsledku v původním jazyce
In this paper we describe the model of glide dislocation interaction with obstacles based on the planar curve dynamics. The dislocations are represented as smooth curves evolving in a slip plane according to the mean curvature motion law, and are mathematically described by the parametric approach. We enhance the parametric model by employing so called tangential redistribution of curve points to increase the stability during numerical computation. We developed additional algorithms for topological changes (i.e. merging and splitting of dislocation curves) enabling a detailed modelling of dislocation interaction with obstacles. The evolving dislocations are approximated as a moving piece-wise linear curves. The obstacles are represented as idealized circular areas of a repulsive stress. Our model is numerically solved by means of semi-implicit flowing finite volume method. We present results of qualitative and quantitative computational studies where we demonstrate the topological changes and discuss the effect of tangential redistribution of curve points on computational results.
Název v anglickém jazyce
Dynamics of dislocations described as evolving curves interacting with obstacles
Popis výsledku anglicky
In this paper we describe the model of glide dislocation interaction with obstacles based on the planar curve dynamics. The dislocations are represented as smooth curves evolving in a slip plane according to the mean curvature motion law, and are mathematically described by the parametric approach. We enhance the parametric model by employing so called tangential redistribution of curve points to increase the stability during numerical computation. We developed additional algorithms for topological changes (i.e. merging and splitting of dislocation curves) enabling a detailed modelling of dislocation interaction with obstacles. The evolving dislocations are approximated as a moving piece-wise linear curves. The obstacles are represented as idealized circular areas of a repulsive stress. Our model is numerically solved by means of semi-implicit flowing finite volume method. We present results of qualitative and quantitative computational studies where we demonstrate the topological changes and discuss the effect of tangential redistribution of curve points on computational results.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP108%2F12%2F1463" target="_blank" >GAP108/12/1463: Dvouúrovňová diskrétně-spojitá dislokační dynamika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modelling and Simulation in Materials Science and Engineering
ISSN
0965-0393
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
34
Strana od-do
1-34
Kód UT WoS článku
000372347800003
EID výsledku v databázi Scopus
—