Three methods for estimating a range of vehicular interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00316582" target="_blank" >RIV/68407700:21340/18:00316582 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26110/17:PU121890
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.physa.2017.09.008" target="_blank" >http://dx.doi.org/10.1016/j.physa.2017.09.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2017.09.008" target="_blank" >10.1016/j.physa.2017.09.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Three methods for estimating a range of vehicular interactions
Popis výsledku v původním jazyce
We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.
Název v anglickém jazyce
Three methods for estimating a range of vehicular interactions
Popis výsledku anglicky
We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-15049S" target="_blank" >GA15-15049S: Detekce stochastických univerzalit v nerovnovážných stavech sociofyzikálních systémů metodami teorie náhodných matic</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
1873-2119
Svazek periodika
491
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
112-126
Kód UT WoS článku
000417661500011
EID výsledku v databázi Scopus
2-s2.0-85031999435