Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pisot unit generators in number fields

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00317609" target="_blank" >RIV/68407700:21340/18:00317609 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jsc.2017.11.005" target="_blank" >https://doi.org/10.1016/j.jsc.2017.11.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jsc.2017.11.005" target="_blank" >10.1016/j.jsc.2017.11.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pisot unit generators in number fields

  • Popis výsledku v původním jazyce

    Pisot numbers are real algebraic integers bigger than 1, whose other conjugates all have modulus smaller than 1. In this paper we deal with the algorithmic problem of finding the smallest Pisot unit generating a given number field. We first solve this problem in all real fields, then we consider the analogous problem involving the so called complex Pisot numbers and we solve it in all number fields that admit such a generator, in particular this includes all fields without CM.

  • Název v anglickém jazyce

    Pisot unit generators in number fields

  • Popis výsledku anglicky

    Pisot numbers are real algebraic integers bigger than 1, whose other conjugates all have modulus smaller than 1. In this paper we deal with the algorithmic problem of finding the smallest Pisot unit generating a given number field. We first solve this problem in all real fields, then we consider the analogous problem involving the so called complex Pisot numbers and we solve it in all number fields that admit such a generator, in particular this includes all fields without CM.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-03538S" target="_blank" >GA13-03538S: Algoritmy, dynamika a geometrie numeračních systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Symbolic Computation

  • ISSN

    0747-7171

  • e-ISSN

  • Svazek periodika

    89

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    94-108

  • Kód UT WoS článku

    000434905600006

  • EID výsledku v databázi Scopus

    2-s2.0-85035787692