On-line algorithms for multiplication and division in real and complex numeration systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00336588" target="_blank" >RIV/68407700:21340/19:00336588 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23638/DMTCS-21-3-14" target="_blank" >https://doi.org/10.23638/DMTCS-21-3-14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23638/DMTCS-21-3-14" target="_blank" >10.23638/DMTCS-21-3-14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On-line algorithms for multiplication and division in real and complex numeration systems
Popis výsledku v původním jazyce
A positional numeration system is given by a base and by a set of digits. The base is a real or complex number β such that |β|>1, and the digit set A is a finite set of digits including 0. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that β is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if (β,A) has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base β and a digit set A of contiguous integers, the system (β,A) has the OL Property if #A>|β|. For a complex base β and symmetric digit set A of contiguous integers, the system (β,A) has the OL Property if #A>ββ+|β+β|. Provided that addition and subtraction are realizable in parallel in the system (β,A) and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base β=3+5root 2 with digits A={-1,0,1}; base β=2i with digits A={-2,-1,0,1,2}; and base β=-32+i3root 2=-1+ω, where ω=exp2iπ3, with digits A={0,±1,±ω,±ω2}.
Název v anglickém jazyce
On-line algorithms for multiplication and division in real and complex numeration systems
Popis výsledku anglicky
A positional numeration system is given by a base and by a set of digits. The base is a real or complex number β such that |β|>1, and the digit set A is a finite set of digits including 0. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that β is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if (β,A) has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base β and a digit set A of contiguous integers, the system (β,A) has the OL Property if #A>|β|. For a complex base β and symmetric digit set A of contiguous integers, the system (β,A) has the OL Property if #A>ββ+|β+β|. Provided that addition and subtraction are realizable in parallel in the system (β,A) and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base β=3+5root 2 with digits A={-1,0,1}; base β=2i with digits A={-2,-1,0,1,2}; and base β=-32+i3root 2=-1+ω, where ω=exp2iπ3, with digits A={0,±1,±ω,±ω2}.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
1365-8050
Svazek periodika
21
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000480436900001
EID výsledku v databázi Scopus
—