Small area estimation of additive parameters under unit-level generalized linear mixed models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00336508" target="_blank" >RIV/68407700:21340/20:00336508 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.2436/20.8080.02.93" target="_blank" >https://doi.org/10.2436/20.8080.02.93</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2436/20.8080.02.93" target="_blank" >10.2436/20.8080.02.93</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Small area estimation of additive parameters under unit-level generalized linear mixed models
Popis výsledku v původním jazyce
Average incomes and poverty proportions are additive parameters obtained as averages of a given function of an income variable. As the variable income has an asymmetric distribution, it is not properly modeled via normal distributions. When dealing with this type of variables, a first option is to apply transformations that approach normality. A second option is to use nonsymmetric distributions from the exponential family. This paper proposes unit-level generalized linear mixed models for modeling asymmetric positive variables and for deriving three types of predictors of small area additive parameters, called empirical best, marginal and plug-in. The parameters of the introduced model are estimated by applying the maximum likelihood method to the Laplace approximation of the likelihood. The mean squared errors of the predictors are estimated by parametric bootstrap. The introduced methodology is applied and illustrated under unit-level gamma mixed models. Some simulation experiments are carried out to study the behavior of the fitting algorithm, the small area predictors and the bootstrap estimator of the mean squared errors. By using data of the Spanish living condition survey of 2013, an application to the estimation of average incomes and poverty proportions in counties of the region of Valencia is given.
Název v anglickém jazyce
Small area estimation of additive parameters under unit-level generalized linear mixed models
Popis výsledku anglicky
Average incomes and poverty proportions are additive parameters obtained as averages of a given function of an income variable. As the variable income has an asymmetric distribution, it is not properly modeled via normal distributions. When dealing with this type of variables, a first option is to apply transformations that approach normality. A second option is to use nonsymmetric distributions from the exponential family. This paper proposes unit-level generalized linear mixed models for modeling asymmetric positive variables and for deriving three types of predictors of small area additive parameters, called empirical best, marginal and plug-in. The parameters of the introduced model are estimated by applying the maximum likelihood method to the Laplace approximation of the likelihood. The mean squared errors of the predictors are estimated by parametric bootstrap. The introduced methodology is applied and illustrated under unit-level gamma mixed models. Some simulation experiments are carried out to study the behavior of the fitting algorithm, the small area predictors and the bootstrap estimator of the mean squared errors. By using data of the Spanish living condition survey of 2013, an application to the estimation of average incomes and poverty proportions in counties of the region of Valencia is given.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SORT
ISSN
1696-2281
e-ISSN
2013-8830
Svazek periodika
44
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
36
Strana od-do
3-38
Kód UT WoS článku
000544353100001
EID výsledku v databázi Scopus
2-s2.0-85090207684