Techniques for identifying depth inhomogeneities of elemental distribution in materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00340467" target="_blank" >RIV/68407700:21340/20:00340467 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.radphyschem.2019.108344" target="_blank" >https://doi.org/10.1016/j.radphyschem.2019.108344</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.radphyschem.2019.108344" target="_blank" >10.1016/j.radphyschem.2019.108344</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Techniques for identifying depth inhomogeneities of elemental distribution in materials
Popis výsledku v původním jazyce
X-ray fluorescence analysis (XRF) is a widespread and preferred method for a variety of analytical applications. Among other things, due to its non-invasiveness and non-destructiveness, it is an excellent method for exploring the valuable objects of our cultural heritage. At the same time, however, the fact that it uses relatively low energy X-rays brings some limitations and problems in interpreting the measurement results, especially if objects with inhomogeneous structure are investigated. The depth in the examined material from which characteristic X-rays are detected is in the order of tens to hundreds of μm, depending on the measured element and composition and density of the material. During the development and use of XRF, several procedures have been developed to estimate whether the examined element is distributed homogeneously in the measured layer or has a depth uneven distribution. The least difficult is the measurement under different angles of excitation and excited radiation impact and emission. More sophisticated options are the simultaneous use of Ka and Kb lines, or K and L lines. The most comprehensive information can be obtained in the confocal arrangement of the spectrometer, where both incident and emitted radiation are narrowly collimated, and the intersection of the two collimated beams is gradually moved under the surface of the object under investigation. The aim of this review paper is to summarize possible procedures for identifying the inhomogeneous structure of the material and test them in the model case of the thickness standards for the copper layer on the steel.
Název v anglickém jazyce
Techniques for identifying depth inhomogeneities of elemental distribution in materials
Popis výsledku anglicky
X-ray fluorescence analysis (XRF) is a widespread and preferred method for a variety of analytical applications. Among other things, due to its non-invasiveness and non-destructiveness, it is an excellent method for exploring the valuable objects of our cultural heritage. At the same time, however, the fact that it uses relatively low energy X-rays brings some limitations and problems in interpreting the measurement results, especially if objects with inhomogeneous structure are investigated. The depth in the examined material from which characteristic X-rays are detected is in the order of tens to hundreds of μm, depending on the measured element and composition and density of the material. During the development and use of XRF, several procedures have been developed to estimate whether the examined element is distributed homogeneously in the measured layer or has a depth uneven distribution. The least difficult is the measurement under different angles of excitation and excited radiation impact and emission. More sophisticated options are the simultaneous use of Ka and Kb lines, or K and L lines. The most comprehensive information can be obtained in the confocal arrangement of the spectrometer, where both incident and emitted radiation are narrowly collimated, and the intersection of the two collimated beams is gradually moved under the surface of the object under investigation. The aim of this review paper is to summarize possible procedures for identifying the inhomogeneous structure of the material and test them in the model case of the thickness standards for the copper layer on the steel.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radiation Physics and Chemistry
ISSN
0969-806X
e-ISSN
1879-0895
Svazek periodika
167
Číslo periodika v rámci svazku
108344
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000506465900021
EID výsledku v databázi Scopus
2-s2.0-85075983587