Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Curvature driven flow of a family of interacting curves with applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00346329" target="_blank" >RIV/68407700:21340/20:00346329 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/mma.6182" target="_blank" >https://doi.org/10.1002/mma.6182</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mma.6182" target="_blank" >10.1002/mma.6182</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Curvature driven flow of a family of interacting curves with applications

  • Popis výsledku v původním jazyce

    In this paper, we investigate a system of geometric evolution equations describing a curvature-driven motion of a family of planar curves with mutual interactions that can have local as well as nonlocal character, and the entire curve may influence evolution of other curves. We propose a direct Lagrangian approach for solving such a geometric flow of interacting curves. We prove local existence, uniqueness, and continuation of classical Hölder smooth solutions to the governing system of nonlinear parabolic equations. A numerical solution to the governing system has been constructed by means of the method of flowing finite volumes. We also discuss various applications of the motion of interacting curves arising in nonlocal geometric flows of curves as well as an interesting physical problem of motion of two interacting dislocation loops in the material science.

  • Název v anglickém jazyce

    Curvature driven flow of a family of interacting curves with applications

  • Popis výsledku anglicky

    In this paper, we investigate a system of geometric evolution equations describing a curvature-driven motion of a family of planar curves with mutual interactions that can have local as well as nonlocal character, and the entire curve may influence evolution of other curves. We propose a direct Lagrangian approach for solving such a geometric flow of interacting curves. We prove local existence, uniqueness, and continuation of classical Hölder smooth solutions to the governing system of nonlinear parabolic equations. A numerical solution to the governing system has been constructed by means of the method of flowing finite volumes. We also discuss various applications of the motion of interacting curves arising in nonlocal geometric flows of curves as well as an interesting physical problem of motion of two interacting dislocation loops in the material science.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Methods in the Applied Sciences

  • ISSN

    0170-4214

  • e-ISSN

    1099-1476

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    4177-4190

  • Kód UT WoS článku

    000508314200001

  • EID výsledku v databázi Scopus

    2-s2.0-85078812584