QUALITATIVE AND NUMERICAL ASPECTS OF A MOTION OF A FAMILY OF INTERACTING CURVES IN SPACE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00364257" target="_blank" >RIV/68407700:21340/22:00364257 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/21M1417181" target="_blank" >https://doi.org/10.1137/21M1417181</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1417181" target="_blank" >10.1137/21M1417181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QUALITATIVE AND NUMERICAL ASPECTS OF A MOTION OF A FAMILY OF INTERACTING CURVES IN SPACE
Popis výsledku v původním jazyce
In this article we investigate a system of geometric evolution equations describing a curvature driven motion of a family of three-dimensional curves in the normal and binormal directions. Evolving curves may be the subject of mutual interactions having both local or nonlocal character where the entire curve may influence evolution of other curves. Such an evolution and interaction can be found in applications. We explore the direct Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semiflows, we are able to prove local existence, uniqueness, and continuation of classical Ho"lder smooth solutions to the governing system of nonlinear parabolic equations. Using the finite volume method, we construct an efficient numerical scheme solving the governing system of nonlinear parabolic equations. Additionally, a nontrivial tangential velocity is considered allowing for redistribution of discretization nodes. We also present several computational studies of the flow combining the normal and binormal velocity and considering nonlocal interactions.
Název v anglickém jazyce
QUALITATIVE AND NUMERICAL ASPECTS OF A MOTION OF A FAMILY OF INTERACTING CURVES IN SPACE
Popis výsledku anglicky
In this article we investigate a system of geometric evolution equations describing a curvature driven motion of a family of three-dimensional curves in the normal and binormal directions. Evolving curves may be the subject of mutual interactions having both local or nonlocal character where the entire curve may influence evolution of other curves. Such an evolution and interaction can be found in applications. We explore the direct Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semiflows, we are able to prove local existence, uniqueness, and continuation of classical Ho"lder smooth solutions to the governing system of nonlinear parabolic equations. Using the finite volume method, we construct an efficient numerical scheme solving the governing system of nonlinear parabolic equations. Additionally, a nontrivial tangential velocity is considered allowing for redistribution of discretization nodes. We also present several computational studies of the flow combining the normal and binormal velocity and considering nonlocal interactions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON APPLIED MATHEMATICS
ISSN
0036-1399
e-ISSN
1095-712X
Svazek periodika
82
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
549-575
Kód UT WoS článku
000803935500007
EID výsledku v databázi Scopus
2-s2.0-85130685715