Spectral analysis of the multi-dimensional diffusion operator with random jumps from the boundary
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00346576" target="_blank" >RIV/68407700:21340/21:00346576 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389005:_____/21:00539466
Výsledek na webu
<a href="https://doi.org/10.1007/s00028-020-00647-1" target="_blank" >https://doi.org/10.1007/s00028-020-00647-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00028-020-00647-1" target="_blank" >10.1007/s00028-020-00647-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectral analysis of the multi-dimensional diffusion operator with random jumps from the boundary
Popis výsledku v původním jazyce
We develop a Hilbert space approach to the diffusion process of the Brownian motion in a bounded domain with random jumps from the boundary introduced by Ben-Ari and Pinsky in 2007. The generator of the process is defined by a diffusion elliptic differential operator in the space of square-integrable functions, subject to non-self-adjoint and non-local boundary conditions expressed through a probability measure on the domain. We obtain an expression for the difference between the resolvent of the operator and that of its Dirichlet realization. We prove that the numerical range is the whole complex plane, despite the fact that the spectrum is purely discrete and is contained in a half plane. Furthermore, for the class of absolutely continuous probability measures with square-integrable densities we characterize the adjoint operator and prove that the system of root vectors is complete. Finally, under certain assumptions on the densities, we obtain enclosures for the non-real spectrum and find a sufficient condition for the nonzero eigenvalue with the smallest real part to be real. The latter supports the conjecture of Ben-Ari and Pinsky that this eigenvalue is always real.
Název v anglickém jazyce
Spectral analysis of the multi-dimensional diffusion operator with random jumps from the boundary
Popis výsledku anglicky
We develop a Hilbert space approach to the diffusion process of the Brownian motion in a bounded domain with random jumps from the boundary introduced by Ben-Ari and Pinsky in 2007. The generator of the process is defined by a diffusion elliptic differential operator in the space of square-integrable functions, subject to non-self-adjoint and non-local boundary conditions expressed through a probability measure on the domain. We obtain an expression for the difference between the resolvent of the operator and that of its Dirichlet realization. We prove that the numerical range is the whole complex plane, despite the fact that the spectrum is purely discrete and is contained in a half plane. Furthermore, for the class of absolutely continuous probability measures with square-integrable densities we characterize the adjoint operator and prove that the system of root vectors is complete. Finally, under certain assumptions on the densities, we obtain enclosures for the non-real spectrum and find a sufficient condition for the nonzero eigenvalue with the smallest real part to be real. The latter supports the conjecture of Ben-Ari and Pinsky that this eigenvalue is always real.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-17749X" target="_blank" >GX20-17749X: Nové výzvy pro spektrální teorii: geometrie, pokročilé materiály a komplexní pole</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Evolution Equations
ISSN
1424-3199
e-ISSN
1424-3202
Svazek periodika
21
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
1651-1675
Kód UT WoS článku
000604865300001
EID výsledku v databázi Scopus
2-s2.0-85098774553