Spectral enclosures for non-self-adjoint extensions of symmetric operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F18%3A00492485" target="_blank" >RIV/61389005:_____/18:00492485 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jfa.2018.04.005" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2018.04.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2018.04.005" target="_blank" >10.1016/j.jfa.2018.04.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectral enclosures for non-self-adjoint extensions of symmetric operators
Popis výsledku v původním jazyce
The spectral properties of non-self-adjoint extensions A([B] )of a symmetric operator in a Hilbert space are studied with the help of ordinary and quasi boundary triples and the corresponding Weyl functions. These extensions are given in terms of abstract boundary conditions involving an (in general non-symmetric) boundary operator B. In the abstract part of this paper, sufficient conditions for sectoriality and m-sectoriality as well as sufficient conditions for A( [B] )to have a non-empty resolvent set are provided in terms of the parameter B and the Weyl function. Special attention is paid to Weyl functions that decay along the negative real line or inside some sector in the complex plane, and spectral enclosures for A([B]) are proved in this situation. The abstract results are applied to elliptic differential operators with local and non-local Robin boundary conditions on unbounded domains, to Schrodinger operators with delta-potentials of complex strengths supported on unbounded hypersurfaces or infinitely many points on the real line, and to quantum graphs with non-self-adjoint vertex couplings.
Název v anglickém jazyce
Spectral enclosures for non-self-adjoint extensions of symmetric operators
Popis výsledku anglicky
The spectral properties of non-self-adjoint extensions A([B] )of a symmetric operator in a Hilbert space are studied with the help of ordinary and quasi boundary triples and the corresponding Weyl functions. These extensions are given in terms of abstract boundary conditions involving an (in general non-symmetric) boundary operator B. In the abstract part of this paper, sufficient conditions for sectoriality and m-sectoriality as well as sufficient conditions for A( [B] )to have a non-empty resolvent set are provided in terms of the parameter B and the Weyl function. Special attention is paid to Weyl functions that decay along the negative real line or inside some sector in the complex plane, and spectral enclosures for A([B]) are proved in this situation. The abstract results are applied to elliptic differential operators with local and non-local Robin boundary conditions on unbounded domains, to Schrodinger operators with delta-potentials of complex strengths supported on unbounded hypersurfaces or infinitely many points on the real line, and to quantum graphs with non-self-adjoint vertex couplings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Svazek periodika
275
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
81
Strana od-do
1808-1888
Kód UT WoS článku
000441371200006
EID výsledku v databázi Scopus
2-s2.0-85046679721