Modern perspectives on near-equilibrium analysis of Turing systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00352994" target="_blank" >RIV/68407700:21340/21:00352994 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1098/rsta.2020.0268" target="_blank" >https://doi.org/10.1098/rsta.2020.0268</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rsta.2020.0268" target="_blank" >10.1098/rsta.2020.0268</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modern perspectives on near-equilibrium analysis of Turing systems
Popis výsledku v původním jazyce
In the nearly seven decades since the publication of Alan Turing's work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developments were nascent in Turing's paper, and others have been due to new insights from modern mathematical techniques, advances in numerical simulations and extensive biological experiments. Despite such progress, there are still important gaps between theory and experiment, with many examples of biological patterning where the underlying mechanisms are still unclear. Here, we review modern developments in the mathematical theory pioneered by Turing, showing how his approach has been generalized to a range of settings beyond the classical two-species reaction-diffusion framework, including evolving and complex manifolds, systems heterogeneous in space and time, and more general reaction-transport equations. While substantial progress has been made in understanding these more complicated models, there are many remaining challenges that we highlight throughout. We focus on the mathematical theory, and in particular linear stability analysis of 'trivial' base states. We emphasize important open questions in developing this theory further, and discuss obstacles in using these techniques to understand biological reality. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Název v anglickém jazyce
Modern perspectives on near-equilibrium analysis of Turing systems
Popis výsledku anglicky
In the nearly seven decades since the publication of Alan Turing's work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developments were nascent in Turing's paper, and others have been due to new insights from modern mathematical techniques, advances in numerical simulations and extensive biological experiments. Despite such progress, there are still important gaps between theory and experiment, with many examples of biological patterning where the underlying mechanisms are still unclear. Here, we review modern developments in the mathematical theory pioneered by Turing, showing how his approach has been generalized to a range of settings beyond the classical two-species reaction-diffusion framework, including evolving and complex manifolds, systems heterogeneous in space and time, and more general reaction-transport equations. While substantial progress has been made in understanding these more complicated models, there are many remaining challenges that we highlight throughout. We focus on the mathematical theory, and in particular linear stability analysis of 'trivial' base states. We emphasize important open questions in developing this theory further, and discuss obstacles in using these techniques to understand biological reality. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN
1364-503X
e-ISSN
1471-2962
Svazek periodika
379
Číslo periodika v rámci svazku
2213
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
—
Kód UT WoS článku
000715239400001
EID výsledku v databázi Scopus
2-s2.0-85118600508