Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00382643" target="_blank" >RIV/68407700:21340/21:00382643 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-85165-1_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-85165-1_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-85165-1_7" target="_blank" >10.1007/978-3-030-85165-1_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum
Popis výsledku v původním jazyce
We have developed symbolic-numeric algorithms implemented in the Wolfram Mathematica to compute the orthonormal canonical Gel’fand–Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M) and Elliott (E) bases of irreducible representations SU(3) ⊃ SO(3) ⊃ SO(2) group for a given orbital of angular momentum. The algorithms resolve the missing label problem by solving eigenvalue problem for the “labeling” B-M operator X(3 ). The effective numeric algorithm for construction of the G-T basis provides a unique capability to perform large scale calculations even with 8 byte real numbers. The algorithms for the construction of B-M and E bases implemented very fast modified Gramm–Schmidt orthonormalization procedure. In B-M basis, a very effective formula for calculation of the matrix X(3 ) is derived by graphical method. The implemented algorithm for construction of the B-M basis makes it possible to perform large scale exact as well as arbitrary precision calculations. The algorithm for the construction of the E basis resolves the missing label problem by calculation of the matrix X(3 ) in an orthogonal basis from this matrix previously built in non-orthogonal basis. The implementation of this algorithm provides large scale calculations with arbitrary precision. 2021, Springer Nature Switzerland AG.
Název v anglickém jazyce
Symbolic-Numeric Algorithms for Computing Orthonormal Bases of SU(3) Group for Orbital Angular Momentum
Popis výsledku anglicky
We have developed symbolic-numeric algorithms implemented in the Wolfram Mathematica to compute the orthonormal canonical Gel’fand–Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M) and Elliott (E) bases of irreducible representations SU(3) ⊃ SO(3) ⊃ SO(2) group for a given orbital of angular momentum. The algorithms resolve the missing label problem by solving eigenvalue problem for the “labeling” B-M operator X(3 ). The effective numeric algorithm for construction of the G-T basis provides a unique capability to perform large scale calculations even with 8 byte real numbers. The algorithms for the construction of B-M and E bases implemented very fast modified Gramm–Schmidt orthonormalization procedure. In B-M basis, a very effective formula for calculation of the matrix X(3 ) is derived by graphical method. The implemented algorithm for construction of the B-M basis makes it possible to perform large scale exact as well as arbitrary precision calculations. The algorithm for the construction of the E basis resolves the missing label problem by calculation of the matrix X(3 ) in an orthogonal basis from this matrix previously built in non-orthogonal basis. The implementation of this algorithm provides large scale calculations with arbitrary precision. 2021, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Algebra in Scientific Computing
ISBN
978-3-030-85164-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
21
Strana od-do
100-120
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Sochi
Datum konání akce
13. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—