Overtaking collisions of m shock waves and interactions of n(n -> infinity)-lump, m(m -> infinity)-solitons, τ(τ -> infinity)-periodic waves solutions to a generalized (2+1)-dimensional new KdV model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00381515" target="_blank" >RIV/68407700:21340/22:00381515 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cjph.2022.06.002" target="_blank" >https://doi.org/10.1016/j.cjph.2022.06.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cjph.2022.06.002" target="_blank" >10.1016/j.cjph.2022.06.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overtaking collisions of m shock waves and interactions of n(n -> infinity)-lump, m(m -> infinity)-solitons, τ(τ -> infinity)-periodic waves solutions to a generalized (2+1)-dimensional new KdV model
Popis výsledku v původním jazyce
We consider a new generalized (2+1)-dimensional KdV model to investigate m (m -> infinity) shock and n (n -> infinity) breather wave solutions via two integral schemes. For the treatment of the model in an auxiliary equation approach, we first convert a nonlinear Burger equation to an ordinary differential equation (ODE) through a certain transformation. This ODE is used as an auxiliary equation of the method to obtain m (m -> infinity) shock wave solutions of the model. For different values of the parameters, we present head on and overtaking collisions with scattering ways of particle of the m (m -> infinity) shock wave solutions. We construct n soliton solutions of the model by using Hirota-bilinear approach. We obtain one lump type breather waves, interactions of one breather wave with a kink wave, interactions of two lump type breather waves by choosing complex conjugate values of free parameters in the n-soliton solutions of the model. Finally, we introduce two lemmas, a theorem and few corollaries on the hybrid interaction (n -> infinity lumps, m -> infinity solitons and tau -> oo periodic waves) solutions of the model. The theories and results are illustrated with adequate examples and suitable graphs.
Název v anglickém jazyce
Overtaking collisions of m shock waves and interactions of n(n -> infinity)-lump, m(m -> infinity)-solitons, τ(τ -> infinity)-periodic waves solutions to a generalized (2+1)-dimensional new KdV model
Popis výsledku anglicky
We consider a new generalized (2+1)-dimensional KdV model to investigate m (m -> infinity) shock and n (n -> infinity) breather wave solutions via two integral schemes. For the treatment of the model in an auxiliary equation approach, we first convert a nonlinear Burger equation to an ordinary differential equation (ODE) through a certain transformation. This ODE is used as an auxiliary equation of the method to obtain m (m -> infinity) shock wave solutions of the model. For different values of the parameters, we present head on and overtaking collisions with scattering ways of particle of the m (m -> infinity) shock wave solutions. We construct n soliton solutions of the model by using Hirota-bilinear approach. We obtain one lump type breather waves, interactions of one breather wave with a kink wave, interactions of two lump type breather waves by choosing complex conjugate values of free parameters in the n-soliton solutions of the model. Finally, we introduce two lemmas, a theorem and few corollaries on the hybrid interaction (n -> infinity lumps, m -> infinity solitons and tau -> oo periodic waves) solutions of the model. The theories and results are illustrated with adequate examples and suitable graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chinese Journal of Physics
ISSN
0577-9073
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
12
Strana od-do
385-396
Kód UT WoS článku
000896973500005
EID výsledku v databázi Scopus
2-s2.0-85142435863