AsTe3: A novel crystalline semiconductor with ultralow thermal conductivity obtained by congruent crystallization from parent glass
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00377727" target="_blank" >RIV/68407700:21340/24:00377727 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jallcom.2024.175918" target="_blank" >https://doi.org/10.1016/j.jallcom.2024.175918</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2024.175918" target="_blank" >10.1016/j.jallcom.2024.175918</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AsTe3: A novel crystalline semiconductor with ultralow thermal conductivity obtained by congruent crystallization from parent glass
Popis výsledku v původním jazyce
The synthesis of novel narrow-band-gap semiconductors with ultralow thermal conductivity opens a pathway to the design of functional materials with high thermoelectric performance or with interesting optical sensitivity in the infrared range. Here, we report on the discovery of the novel crystalline binary AsTe3 (c-AsTe3) prepared by spark plasma sintering (SPS) from full and congruent crystallization of amorphous AsTe3 (a-AsTe3) previously prepared by twin roller quenching. X-ray diffraction suggests that the structure of c-AsTe3 can be described as a superstructure of elementary Te with a specific distribution of As and Te atoms. More specifically, it appears as an intergrowth of a Te subunit (3 atoms) and As2Te5 subunit (6 As + 15 Te atoms) separated with interlayer spaces. The optical transmittance measured on both crystalline and amorphous AsTe3 indicates a maximum transmittance of 22 % over the infrared range 10-25 mu m. Transport properties measurements, performed between 5 and 375 K, reveal that AsTe3 behaves as a lightly doped, p-type semiconductor. The complex crystal structure combined with a small-grain-size microstructure of the sample yields extremely low lattice thermal conductivity values of 0.35 W m(-1) K-1 near 300 K. This poor ability to conduct heat is the main property that gives rise to an estimated dimensionless thermoelectric figure of merit ZT of similar to 0.3 at 375 K. These findings show that the recrystallization of amorphous phases by SPS provides an effective approach for stabilizing novel phases with interesting functional properties.
Název v anglickém jazyce
AsTe3: A novel crystalline semiconductor with ultralow thermal conductivity obtained by congruent crystallization from parent glass
Popis výsledku anglicky
The synthesis of novel narrow-band-gap semiconductors with ultralow thermal conductivity opens a pathway to the design of functional materials with high thermoelectric performance or with interesting optical sensitivity in the infrared range. Here, we report on the discovery of the novel crystalline binary AsTe3 (c-AsTe3) prepared by spark plasma sintering (SPS) from full and congruent crystallization of amorphous AsTe3 (a-AsTe3) previously prepared by twin roller quenching. X-ray diffraction suggests that the structure of c-AsTe3 can be described as a superstructure of elementary Te with a specific distribution of As and Te atoms. More specifically, it appears as an intergrowth of a Te subunit (3 atoms) and As2Te5 subunit (6 As + 15 Te atoms) separated with interlayer spaces. The optical transmittance measured on both crystalline and amorphous AsTe3 indicates a maximum transmittance of 22 % over the infrared range 10-25 mu m. Transport properties measurements, performed between 5 and 375 K, reveal that AsTe3 behaves as a lightly doped, p-type semiconductor. The complex crystal structure combined with a small-grain-size microstructure of the sample yields extremely low lattice thermal conductivity values of 0.35 W m(-1) K-1 near 300 K. This poor ability to conduct heat is the main property that gives rise to an estimated dimensionless thermoelectric figure of merit ZT of similar to 0.3 at 375 K. These findings show that the recrystallization of amorphous phases by SPS provides an effective approach for stabilizing novel phases with interesting functional properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Alloys and Compounds
ISSN
0925-8388
e-ISSN
1873-4669
Svazek periodika
1004
Číslo periodika v rámci svazku
175918
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001302007900001
EID výsledku v databázi Scopus
2-s2.0-85201108457