The repetition threshold of episturmian sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00382219" target="_blank" >RIV/68407700:21340/24:00382219 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ejc.2024.104001" target="_blank" >https://doi.org/10.1016/j.ejc.2024.104001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2024.104001" target="_blank" >10.1016/j.ejc.2024.104001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The repetition threshold of episturmian sequences
Popis výsledku v původním jazyce
The repetition threshold of a class C of infinite d-ary sequences is the smallest real number r such that in the class C there exists a sequence that avoids e-powers for all e > r. This notion was introduced by Dejean in 1972 for the class of all sequences over a d-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every d is an element of N. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences - one of the possible generalizations of Sturmian sequences. Here, we focus on the class of d-ary episturmian sequences - another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the d-bonacci sequence and its value equals 2+ 1/t-1 positive root of the polynomial x(d) - x(d-1) - <middle dot> <middle dot> <middle dot> - x - 1. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Název v anglickém jazyce
The repetition threshold of episturmian sequences
Popis výsledku anglicky
The repetition threshold of a class C of infinite d-ary sequences is the smallest real number r such that in the class C there exists a sequence that avoids e-powers for all e > r. This notion was introduced by Dejean in 1972 for the class of all sequences over a d-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every d is an element of N. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences - one of the possible generalizations of Sturmian sequences. Here, we focus on the class of d-ary episturmian sequences - another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the d-bonacci sequence and its value equals 2+ 1/t-1 positive root of the polynomial x(d) - x(d-1) - <middle dot> <middle dot> <middle dot> - x - 1. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
1095-9971
Svazek periodika
120
Číslo periodika v rámci svazku
104001
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001254812300001
EID výsledku v databázi Scopus
2-s2.0-85194957435