EEG Classification by Minimalistic Convolutional Neural Network Utilizing Context Information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F21%3A00353219" target="_blank" >RIV/68407700:21460/21:00353219 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/EHB52898.2021.9657572" target="_blank" >https://doi.org/10.1109/EHB52898.2021.9657572</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EHB52898.2021.9657572" target="_blank" >10.1109/EHB52898.2021.9657572</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EEG Classification by Minimalistic Convolutional Neural Network Utilizing Context Information
Popis výsledku v původním jazyce
Labelling of electroencephalography (EEG) or polysomnography (PSG) recordings can be time consuming for a physician (expert), especially if we consider long term monitoring (e.g. sleep stages). Convolutional neural networks (CNN), which use images created from raw or preprocessed data trials, appear to be a promising method for semi-automated label acquisition. To the best of our knowledge most of the existing studies use only one channel or a very small number of channels in combination with a complicated structure of the CNN. In our study we propose adding context information based on use of multiple channels in an input image. Based on our current understanding and state of the art we expect additional growth of final accuracy. Studies based on this approach show additional input from context information that enhances final validation accuracy. During our research we focused on small structure CNN with only three convolutional layers and two fully connected layers. Additionally, all methods which use CNN structure are heavily influenced by several parameters like number of classes or size of their convolution masks. Secondary goal of this study is to acquaint the reader with these parameters and with possible solutions for their problems. Based on more than six thousand different CNN settings and input settings we managed to acquire results up to 94.6% mean training accuracy and 88.2% mean validation accuracy in sleep stage classification on real PSG including sleep EEG recordings even with easy-to-create CNN structure.
Název v anglickém jazyce
EEG Classification by Minimalistic Convolutional Neural Network Utilizing Context Information
Popis výsledku anglicky
Labelling of electroencephalography (EEG) or polysomnography (PSG) recordings can be time consuming for a physician (expert), especially if we consider long term monitoring (e.g. sleep stages). Convolutional neural networks (CNN), which use images created from raw or preprocessed data trials, appear to be a promising method for semi-automated label acquisition. To the best of our knowledge most of the existing studies use only one channel or a very small number of channels in combination with a complicated structure of the CNN. In our study we propose adding context information based on use of multiple channels in an input image. Based on our current understanding and state of the art we expect additional growth of final accuracy. Studies based on this approach show additional input from context information that enhances final validation accuracy. During our research we focused on small structure CNN with only three convolutional layers and two fully connected layers. Additionally, all methods which use CNN structure are heavily influenced by several parameters like number of classes or size of their convolution masks. Secondary goal of this study is to acquaint the reader with these parameters and with possible solutions for their problems. Based on more than six thousand different CNN settings and input settings we managed to acquire results up to 94.6% mean training accuracy and 88.2% mean validation accuracy in sleep stage classification on real PSG including sleep EEG recordings even with easy-to-create CNN structure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 International Conference on e-Health and Bioengineering (EHB)
ISBN
978-1-6654-4000-4
ISSN
2575-5137
e-ISSN
2575-5145
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Iasi
Datum konání akce
18. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000802227900036