Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

EEG Classification by Minimalistic Convolutional Neural Network Utilizing Context Information

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F21%3A00353219" target="_blank" >RIV/68407700:21460/21:00353219 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/EHB52898.2021.9657572" target="_blank" >https://doi.org/10.1109/EHB52898.2021.9657572</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/EHB52898.2021.9657572" target="_blank" >10.1109/EHB52898.2021.9657572</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    EEG Classification by Minimalistic Convolutional Neural Network Utilizing Context Information

  • Popis výsledku v původním jazyce

    Labelling of electroencephalography (EEG) or polysomnography (PSG) recordings can be time consuming for a physician (expert), especially if we consider long term monitoring (e.g. sleep stages). Convolutional neural networks (CNN), which use images created from raw or preprocessed data trials, appear to be a promising method for semi-automated label acquisition. To the best of our knowledge most of the existing studies use only one channel or a very small number of channels in combination with a complicated structure of the CNN. In our study we propose adding context information based on use of multiple channels in an input image. Based on our current understanding and state of the art we expect additional growth of final accuracy. Studies based on this approach show additional input from context information that enhances final validation accuracy. During our research we focused on small structure CNN with only three convolutional layers and two fully connected layers. Additionally, all methods which use CNN structure are heavily influenced by several parameters like number of classes or size of their convolution masks. Secondary goal of this study is to acquaint the reader with these parameters and with possible solutions for their problems. Based on more than six thousand different CNN settings and input settings we managed to acquire results up to 94.6% mean training accuracy and 88.2% mean validation accuracy in sleep stage classification on real PSG including sleep EEG recordings even with easy-to-create CNN structure.

  • Název v anglickém jazyce

    EEG Classification by Minimalistic Convolutional Neural Network Utilizing Context Information

  • Popis výsledku anglicky

    Labelling of electroencephalography (EEG) or polysomnography (PSG) recordings can be time consuming for a physician (expert), especially if we consider long term monitoring (e.g. sleep stages). Convolutional neural networks (CNN), which use images created from raw or preprocessed data trials, appear to be a promising method for semi-automated label acquisition. To the best of our knowledge most of the existing studies use only one channel or a very small number of channels in combination with a complicated structure of the CNN. In our study we propose adding context information based on use of multiple channels in an input image. Based on our current understanding and state of the art we expect additional growth of final accuracy. Studies based on this approach show additional input from context information that enhances final validation accuracy. During our research we focused on small structure CNN with only three convolutional layers and two fully connected layers. Additionally, all methods which use CNN structure are heavily influenced by several parameters like number of classes or size of their convolution masks. Secondary goal of this study is to acquaint the reader with these parameters and with possible solutions for their problems. Based on more than six thousand different CNN settings and input settings we managed to acquire results up to 94.6% mean training accuracy and 88.2% mean validation accuracy in sleep stage classification on real PSG including sleep EEG recordings even with easy-to-create CNN structure.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 International Conference on e-Health and Bioengineering (EHB)

  • ISBN

    978-1-6654-4000-4

  • ISSN

    2575-5137

  • e-ISSN

    2575-5145

  • Počet stran výsledku

    4

  • Strana od-do

    1-4

  • Název nakladatele

    IEEE Industrial Electronic Society

  • Místo vydání

    Vienna

  • Místo konání akce

    Iasi

  • Datum konání akce

    18. 11. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000802227900036