A Pipeline for Population and Analysis of Personal Health Knowledge Graphs (PHKGs)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F22%3A00364139" target="_blank" >RIV/68407700:21460/22:00364139 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00364139
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3235/paper8.pdf" target="_blank" >https://ceur-ws.org/Vol-3235/paper8.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Pipeline for Population and Analysis of Personal Health Knowledge Graphs (PHKGs)
Popis výsledku v původním jazyce
Personal Health Knowledge Graphs (PHKGs) are not yet ubiquitous, even though they have a great potential to enrich general knowledge captured in various Knowledge Graphs by adding personal contexts. This poster paper presents work in progress about a pipeline for generating PHKGs from tree-structured Electronic Health Record (EHR) data by applying a hierarchical ontological approach. This pipeline could also be applied to other domains of Personal Knowledge Graphs. Moreover, this pipeline targets the intersection between the symbolic representation of knowledge used for computational semantics and numeric graph data representation used for graph analysis and machine learning. We present the first results from applying this pipeline to synthetic patient EHRs with the diagnosis of colorectal cancer (based on Synthea). The resulting numeric representation of PHKGs or their subgraphs can be used in many practical graph algorithms. Finally, our pipeline study uncovers future research on how this numeric representation of PHKGs should be embedded into continuous and low-dimensional vector space to utilize graph machine learning and deep learning methods
Název v anglickém jazyce
A Pipeline for Population and Analysis of Personal Health Knowledge Graphs (PHKGs)
Popis výsledku anglicky
Personal Health Knowledge Graphs (PHKGs) are not yet ubiquitous, even though they have a great potential to enrich general knowledge captured in various Knowledge Graphs by adding personal contexts. This poster paper presents work in progress about a pipeline for generating PHKGs from tree-structured Electronic Health Record (EHR) data by applying a hierarchical ontological approach. This pipeline could also be applied to other domains of Personal Knowledge Graphs. Moreover, this pipeline targets the intersection between the symbolic representation of knowledge used for computational semantics and numeric graph data representation used for graph analysis and machine learning. We present the first results from applying this pipeline to synthetic patient EHRs with the diagnosis of colorectal cancer (based on Synthea). The resulting numeric representation of PHKGs or their subgraphs can be used in many practical graph algorithms. Finally, our pipeline study uncovers future research on how this numeric representation of PHKGs should be embedded into continuous and low-dimensional vector space to utilize graph machine learning and deep learning methods
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
roceedings of Poster and Demo Track and Workshop Track of the 18th International Conference on Semantic Systems co-located with 18th International Conference on Semantic Systems (SEMANTiCS 2022)
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Aachen
Místo konání akce
Vienna
Datum konání akce
13. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—