Assessing Speech Intelligibility and Severity Level in Parkinson's Disease Using Wav2Vec 2.0
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F24%3A00376500" target="_blank" >RIV/68407700:21460/24:00376500 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TSP63128.2024.10605915" target="_blank" >https://doi.org/10.1109/TSP63128.2024.10605915</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP63128.2024.10605915" target="_blank" >10.1109/TSP63128.2024.10605915</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing Speech Intelligibility and Severity Level in Parkinson's Disease Using Wav2Vec 2.0
Popis výsledku v původním jazyce
Parkinson's disease (PD) is characterized by profound speech and intelligibility impairments. This paper investigates the potential of Wav2Vec 2.0, a pre-trained speech transformer-based model, in assessing speech intelligibility and severity levels in PD. By leveraging Wav2Vec 2.0 cross-language capabilities, we deployed an English model on Italian speech data and evaluated Character Error Rate (CER). Our dataset comprised Young Healthy Controls (YHC), Elderly Healthy Controls (EHC), and PD subjects. A significant difference in the mean CER (non-parametric ANOVA; p < 0.001) was observed, with YHC being significantly different from EHC and PD. Our analysis revealed that intelligibility in the PD group did not correlate significantly with Unified Parkinson's Disease Rating Scale (UPDRS) scores (Spearman's rho = 0.37, p = 0.07). Through Z-score based detection, we were able to identify the most affected PD subjects based on their intelligibility and ranked the words that were incorrectly recognized for these individuals.
Název v anglickém jazyce
Assessing Speech Intelligibility and Severity Level in Parkinson's Disease Using Wav2Vec 2.0
Popis výsledku anglicky
Parkinson's disease (PD) is characterized by profound speech and intelligibility impairments. This paper investigates the potential of Wav2Vec 2.0, a pre-trained speech transformer-based model, in assessing speech intelligibility and severity levels in PD. By leveraging Wav2Vec 2.0 cross-language capabilities, we deployed an English model on Italian speech data and evaluated Character Error Rate (CER). Our dataset comprised Young Healthy Controls (YHC), Elderly Healthy Controls (EHC), and PD subjects. A significant difference in the mean CER (non-parametric ANOVA; p < 0.001) was observed, with YHC being significantly different from EHC and PD. Our analysis revealed that intelligibility in the PD group did not correlate significantly with Unified Parkinson's Disease Rating Scale (UPDRS) scores (Spearman's rho = 0.37, p = 0.07). Through Z-score based detection, we were able to identify the most affected PD subjects based on their intelligibility and ranked the words that were incorrectly recognized for these individuals.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5107" target="_blank" >LX22NPO5107: Národní ústav pro neurologický výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 47th International Conference on Telecommunications and Signal Processing (TSP)
ISBN
979-8-3503-6559-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
231-234
Název nakladatele
IEEE
Místo vydání
Montreal
Místo konání akce
Virtual Conference
Datum konání akce
10. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—