Longitudinal Evaluation of a 30 Day Therapy Treatment of a Hemiplegic Ankle by Applying a Wearable System and Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F24%3A00382863" target="_blank" >RIV/68407700:21460/24:00382863 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-62523-7_51" target="_blank" >http://dx.doi.org/10.1007/978-3-031-62523-7_51</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-62523-7_51" target="_blank" >10.1007/978-3-031-62523-7_51</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Longitudinal Evaluation of a 30 Day Therapy Treatment of a Hemiplegic Ankle by Applying a Wearable System and Machine Learning
Popis výsledku v původním jazyce
The amalgamation of wearable systems and machine learning are envisioned to considerably augment the acuity and situational awareness of clinicians for the prescription of a rehabilitation strategy. For example, a therapy regimen for improving the rehabilitation status of a subject’s hemiplegic ankle can be monitored by a wearable system, such as through a smartphone equipped with a software application to function as a wearable and wireless gyroscope platform. Using a machine learning algorithm, such as a support vector machine, various longitudinal phases of the therapy prescription can be differentiated to establish the efficacy of the rehabilitation strategy. Considerable classification accuracy relative to the preliminary first day and final phase of a 30 day longitudinal therapy application has been achieved in conjunction with the application of a smartphone as a wearable system capable of providing a gyroscope signal for subsequent machine learning application through a support vector machine. The implications are for the ability to optimize a rehabilitation strategy from a remote context regarding the clinical team and subject. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Název v anglickém jazyce
Longitudinal Evaluation of a 30 Day Therapy Treatment of a Hemiplegic Ankle by Applying a Wearable System and Machine Learning
Popis výsledku anglicky
The amalgamation of wearable systems and machine learning are envisioned to considerably augment the acuity and situational awareness of clinicians for the prescription of a rehabilitation strategy. For example, a therapy regimen for improving the rehabilitation status of a subject’s hemiplegic ankle can be monitored by a wearable system, such as through a smartphone equipped with a software application to function as a wearable and wireless gyroscope platform. Using a machine learning algorithm, such as a support vector machine, various longitudinal phases of the therapy prescription can be differentiated to establish the efficacy of the rehabilitation strategy. Considerable classification accuracy relative to the preliminary first day and final phase of a 30 day longitudinal therapy application has been achieved in conjunction with the application of a smartphone as a wearable system capable of providing a gyroscope signal for subsequent machine learning application through a support vector machine. The implications are for the ability to optimize a rehabilitation strategy from a remote context regarding the clinical team and subject. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Digital Health and Medical Bioengineering. Proceedings of the 11th International Conference on E-Health and Bioengineering, EHB-2023, November 9–10, 2023, Bucharest, Romania – Volume 3: Telemedicine, Biomaterials, Environmental Protection, Medical Imaging, and Biomechanics
ISBN
978-3-031-62523-7
ISSN
1680-0737
e-ISSN
1433-9277
Počet stran výsledku
8
Strana od-do
461-468
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
Bucuresti
Datum konání akce
9. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001434998400051