Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Selecting Image Pairs for SfM on Large Scale Dataset by Introducing a Novel Set Similarity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00329385" target="_blank" >RIV/68407700:21730/17:00329385 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8075347" target="_blank" >https://ieeexplore.ieee.org/document/8075347</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICT-ISPC.2017.8075347" target="_blank" >10.1109/ICT-ISPC.2017.8075347</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Selecting Image Pairs for SfM on Large Scale Dataset by Introducing a Novel Set Similarity

  • Popis výsledku v původním jazyce

    Structure from Motion (SfM), which reconstructs a 3D model from 2D image sequences, is one of the most important reconstruction techniques in computer vision domain. In recent years, the unordered large photo collections are available on the Web and many researches have been proposed about SfM using the images on the Web. However, computational cost for matching in these researches is very high. To make matching feasible, finding out image connectivity for SfM in advance is important. The bag-of-visual-words (BoVW) with applying standard term frequency-inverse document frequency (tf-idf) weighting is one of the widely used methods for calculating image pair similarity as a vector similarity. On the other hand, a method based on Jaccard similarity was proposed to use for this purpose as a set similarity, and improved the precision scores. In this paper, we present a novel set similarity called modified Simpson similarity, and a method for finding appropriate images to match in SfM by combining it with the method using tf-idf weighting. In our method, the similarities between images are calculated using tf-idf as the vector similarity and using modified Simpson similarity as the set similarity. After calculating pairwise similarity by each method, top k most similar images are selected for each image as a query, and we take the intersection of those predicted image pairs. For the evaluation of our method, experimental results are shown on the large dataset which is one of the benchmarks for this purpose. The result of our method which is a combination of tf-idf and modified Simpson similarity achieved better accuracy than any other results by tf-idf, other set similarity and combination of tf-idf and other set similarity.

  • Název v anglickém jazyce

    Selecting Image Pairs for SfM on Large Scale Dataset by Introducing a Novel Set Similarity

  • Popis výsledku anglicky

    Structure from Motion (SfM), which reconstructs a 3D model from 2D image sequences, is one of the most important reconstruction techniques in computer vision domain. In recent years, the unordered large photo collections are available on the Web and many researches have been proposed about SfM using the images on the Web. However, computational cost for matching in these researches is very high. To make matching feasible, finding out image connectivity for SfM in advance is important. The bag-of-visual-words (BoVW) with applying standard term frequency-inverse document frequency (tf-idf) weighting is one of the widely used methods for calculating image pair similarity as a vector similarity. On the other hand, a method based on Jaccard similarity was proposed to use for this purpose as a set similarity, and improved the precision scores. In this paper, we present a novel set similarity called modified Simpson similarity, and a method for finding appropriate images to match in SfM by combining it with the method using tf-idf weighting. In our method, the similarities between images are calculated using tf-idf as the vector similarity and using modified Simpson similarity as the set similarity. After calculating pairwise similarity by each method, top k most similar images are selected for each image as a query, and we take the intersection of those predicted image pairs. For the evaluation of our method, experimental results are shown on the large dataset which is one of the benchmarks for this purpose. The result of our method which is a combination of tf-idf and modified Simpson similarity achieved better accuracy than any other results by tf-idf, other set similarity and combination of tf-idf and other set similarity.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2017 6th ICT International Student Project Conference (ICT-ISPC)

  • ISBN

    978-1-5386-2996-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-4

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway, NJ

  • Místo konání akce

    Univ Teknologi Malaysia, Johor

  • Datum konání akce

    23. 5. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000426970800054