Improving Image Pair Selection for Large Scale Structure from Motion by Introducing Modified Simpson Coefficient
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F22%3A00364315" target="_blank" >RIV/68407700:21730/22:00364315 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1587/transinf.2021EDP7244" target="_blank" >https://doi.org/10.1587/transinf.2021EDP7244</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1587/transinf.2021EDP7244" target="_blank" >10.1587/transinf.2021EDP7244</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Image Pair Selection for Large Scale Structure from Motion by Introducing Modified Simpson Coefficient
Popis výsledku v původním jazyce
Selecting visually overlapping image pairs without any prior information is an essential task of large-scale structure from motion (SfM) pipelines. To address this problem, many state-of-the-art image re trieval systems adopt the idea of bag of visual words (BoVW) for com puting image-pair similarity. In this paper, we present a method for im proving the image pair selection using BoVW. Our method combines a conventional vector-based approach and a set-based approach. For the set similarity, we introduce a modified version of the Simpson (m-Simpson) coefficient. We show the advantage of this measure over three typical set similarity measures and demonstrate that the combination of vector similar ity and the m-Simpson coefficient effectively reduces false positives and in creases accuracy. To discuss the choice of vocabulary construction, we pre pared both a sampled vocabulary on an evaluation dataset and a basic pre trained vocabulary on a training dataset. In addition, we tested our method on vocabularies of different sizes. Our experimental results show that the proposed method dramatically improves precision scores especially on the sampled vocabulary and performs better than the state-of-the-art methods that use pre-trained vocabularies. We further introduce a method to deter mine the k value of top-k relevant searches for each image and show that it obtains higher precision at the same recall.
Název v anglickém jazyce
Improving Image Pair Selection for Large Scale Structure from Motion by Introducing Modified Simpson Coefficient
Popis výsledku anglicky
Selecting visually overlapping image pairs without any prior information is an essential task of large-scale structure from motion (SfM) pipelines. To address this problem, many state-of-the-art image re trieval systems adopt the idea of bag of visual words (BoVW) for com puting image-pair similarity. In this paper, we present a method for im proving the image pair selection using BoVW. Our method combines a conventional vector-based approach and a set-based approach. For the set similarity, we introduce a modified version of the Simpson (m-Simpson) coefficient. We show the advantage of this measure over three typical set similarity measures and demonstrate that the combination of vector similar ity and the m-Simpson coefficient effectively reduces false positives and in creases accuracy. To discuss the choice of vocabulary construction, we pre pared both a sampled vocabulary on an evaluation dataset and a basic pre trained vocabulary on a training dataset. In addition, we tested our method on vocabularies of different sizes. Our experimental results show that the proposed method dramatically improves precision scores especially on the sampled vocabulary and performs better than the state-of-the-art methods that use pre-trained vocabularies. We further introduce a method to deter mine the k value of top-k relevant searches for each image and show that it obtains higher precision at the same recall.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEICE Transactions on Information and Systems
ISSN
0916-8532
e-ISSN
1745-1361
Svazek periodika
E105
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
10
Strana od-do
1590-1599
Kód UT WoS článku
000852731400009
EID výsledku v databázi Scopus
2-s2.0-85138462029