Stability-preserving Morse normal form
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00344003" target="_blank" >RIV/68407700:21730/20:00344003 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TAC.2020.2967465" target="_blank" >https://doi.org/10.1109/TAC.2020.2967465</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2020.2967465" target="_blank" >10.1109/TAC.2020.2967465</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability-preserving Morse normal form
Popis výsledku v původním jazyce
The Morse normal form of linear systems is a fundamental result of broad interest in systems and control theory. The form is canonical relative to the group of state feedback, output injection, and input-coordinate, output-coordinate and state-coordinate transformations. The complete system invariant under the action of this group consists of three lists of integers and one list of polynomials. Stability of the system, however, is not invariant under this action. In problems where stability matters one needs a more specific result, the stability-preserving Morse normal form. This new form applies to stable systems and it is canonical with respect to stability-preserving state feedback and stability-preserving output injection plus input-coordinate, output-coordinate, and state-coordinate transformations. The complete invariant is shown to consist of three lists of integers and two lists of polynomials, one having only stable zeros and the other one only unstable zeros. The canonical system representation consists of four subsystems three of which are ordered cascade realizations of prime building blocks and the fourth one realizes a Jordan block matrix.
Název v anglickém jazyce
Stability-preserving Morse normal form
Popis výsledku anglicky
The Morse normal form of linear systems is a fundamental result of broad interest in systems and control theory. The form is canonical relative to the group of state feedback, output injection, and input-coordinate, output-coordinate and state-coordinate transformations. The complete system invariant under the action of this group consists of three lists of integers and one list of polynomials. Stability of the system, however, is not invariant under this action. In problems where stability matters one needs a more specific result, the stability-preserving Morse normal form. This new form applies to stable systems and it is canonical with respect to stability-preserving state feedback and stability-preserving output injection plus input-coordinate, output-coordinate, and state-coordinate transformations. The complete invariant is shown to consist of three lists of integers and two lists of polynomials, one having only stable zeros and the other one only unstable zeros. The canonical system representation consists of four subsystems three of which are ordered cascade realizations of prime building blocks and the fourth one realizes a Jordan block matrix.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
1558-2523
Svazek periodika
65
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
5099-5113
Kód UT WoS článku
000595526300007
EID výsledku v databázi Scopus
2-s2.0-85097656268