TRPLP – Trifocal Relative Pose From Lines at Points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347781" target="_blank" >RIV/68407700:21730/20:00347781 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR42600.2020.01209" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.01209</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR42600.2020.01209" target="_blank" >10.1109/CVPR42600.2020.01209</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TRPLP – Trifocal Relative Pose From Lines at Points
Popis výsledku v původním jazyce
We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of (i) three points and one line and (ii) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Grobner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We show in simulated experiments that our solvers are numerically robust and stable under image noise. We show in real experiment that (i) SIFT features provide good enough point-and-line correspondences for three-view reconstruction and (ii) that we can solve difficult cases with too few or too noisy tentative matches where the state of the art structure from motion initialization fails.
Název v anglickém jazyce
TRPLP – Trifocal Relative Pose From Lines at Points
Popis výsledku anglicky
We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of (i) three points and one line and (ii) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Grobner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We show in simulated experiments that our solvers are numerically robust and stable under image noise. We show in real experiment that (i) SIFT features provide good enough point-and-line correspondences for three-view reconstruction and (ii) that we can solve difficult cases with too few or too noisy tentative matches where the state of the art structure from motion initialization fails.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-7168-5
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
11
Strana od-do
12070-12080
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Seattle
Datum konání akce
13. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—